Extreme Environmental Events

2011 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Seismic Wave Propagation in Media with Complex Geometries, Simulation of

Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-7695-6_41

Article Outline

Glossary

Definition of the Subject

Introduction

The Evolution of Numerical Methods and Grids

3D Wave Propagation on Hexahedral Grids: Soil-Structure Interactions

3D Wave Propagation on Tetrahedral Grids: Application to Volcanology

Local Time Stepping: ∆t-Adaptation

Discussion and Future Directions

Acknowledgments

Bibliography

Keywords

Ground Motion Spectral Element Tetrahedral Mesh Spectral Element Method Seismic Wave Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

We would like to acknowledge partial support towards this research from: The European Human Resources and Mobility Program (SPICE‐Network), the German Research Foundation (Emmy Noether‐Programme), the Bavarian Government (KOHNWIHR, graduate college THESIS, BaCaTec), and MunichRe. We would also like to thank J. Tromp supporting MS's visit to CalTech. We also thank two anonymous reviewers for constructive comments on the manuscript.

Bibliography

Primary Literature

  1. 1.
    Alterman Z, Karal FC (1968) Propagation of elastic waves in layered media by finite‐difference methods. Bull Seism Soc Am 58:367–398Google Scholar
  2. 2.
    Benzley SE, Harris NJ, Scott M, Borden M, Owen SJ (2005) Conformal refinement and coarsening of unstructured hexahedral meshes. J Comput Inf Sci Eng 5:330–337CrossRefGoogle Scholar
  3. 3.
    Bey J (1995) Tetrahedral grid refinement. Computing 55:355–378Google Scholar
  4. 4.
    Bielak J, Loukakis K, Hisada Y, Yoshimura C (2003) Domain reduction method for three‐dimensional earthquake modeling in localized regions, Part I: Theory. Bull Seism Soc Am 93:817–824Google Scholar
  5. 5.
    Bonilla LF, Archuleta RJ, Lavallée D (2005) Hysteretic and dilatant behavior of cohesionless soils and their effects on nonlinear site response: Field data observations and modelling. Bull Seism Soc Am 95(6):2373–2395Google Scholar
  6. 6.
    Boore D (1972) Finite‐difference methods for seismic wave propagation in heterogeneous materials. In: Bolt BA (ed) Methods in Computational Physics, vol 11. Academic Press, New YorkGoogle Scholar
  7. 7.
    Braun J, Sambridge MS (1995) A numerical method for solving partial differential equations on highly irregular evolving grids. Nature 376:655–660CrossRefGoogle Scholar
  8. 8.
    Bunge HP, Tromp J (2003) Supercomputing moves to universities and makes possible new ways to organize computational research. EOS 84(4):30, 33CrossRefGoogle Scholar
  9. 9.
    Carcione JM, Wang J-P (1993) A Chebyshev collocation method for the elastodynamic equation in generalised coordinates. Comp Fluid Dyn 2:269–290Google Scholar
  10. 10.
    Carcione JM, Kosloff D, Kosloff R (1988) Viscoacoustic wave propagation simulation in the earth. Geophysics 53:769–777CrossRefGoogle Scholar
  11. 11.
    Carcione JM, Kosloff D, Behle A, Seriani G (1992) A spectral scheme for wave propagation simulation in 3-D elastic‐anisotropic media. Geophysics 57:1593–1607CrossRefGoogle Scholar
  12. 12.
    Carey G (1997) Computational grids: Generation, adaptation, and solution strategies. Taylor Francis, New YorkGoogle Scholar
  13. 13.
    Cerveny V (2001) Seismic ray theory. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  14. 14.
    Chaljub E, Tarantola A (1997) Sensitivity of SS precursors to topography on the upper‐mantle 660-km discontinuity. Geophys Res Lett 24(21):2613–2616CrossRefGoogle Scholar
  15. 15.
    Chaljub E, Komatitsch D, Vilotte JP, Capdeville Y, Valette B, Festa G (2007) Spectral element analysis in seismology. In: Wu R-S, Maupin V (eds) Advances in wave propagation in heterogeneous media. Advances in Geophysics, vol 48. Elsevier, London, pp 365–419CrossRefGoogle Scholar
  16. 16.
    Chapman CH (2004) Fundamentals of seismic wave propagation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. 17.
    CIG www.geodynamics.org. Accessed 1 Jul 2008
  18. 18.
    Cockburn B, Shu CW (1989) TVB Runge“Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework. Math Comp 52:411–435Google Scholar
  19. 19.
    Cockburn B, Shu CW (1991) The Runge–Kutta local projection P1‐Discontinuous Galerkin finite element method for scalar conservation laws. Math Model Numer Anal 25:337–361Google Scholar
  20. 20.
    Cockburn B, Shu CW (1998) The Runge–Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems. J Comput Phys 141:199–224CrossRefGoogle Scholar
  21. 21.
    Cockburn B, Lin SY, Shu CW (1989) TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems. J Comput Phys 84:90–113CrossRefGoogle Scholar
  22. 22.
    Cockburn B, Hou S, Shu CW (1990) The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math Comp 54:545–581Google Scholar
  23. 23.
    Cockburn B, Karniadakis GE, Shu CW (2000) Discontinuous Galerkin methods, theory, computation and applications. LNCSE, vol 11. Springer, New YorkGoogle Scholar
  24. 24.
    Courant R, Friedrichs KO, Lewy H (1928) Über die partiellen Differenzialgleichungen der mathematischen Physik. Mathematische Annalen 100:32–74CrossRefGoogle Scholar
  25. 25.
    CUBIT cubit.sandia.gov. Accessed 1 Jul 2008
  26. 26.
    Dablain MA (1986) The application of high-order differencing to the scalar wave equation. Geophysics 51:54–66CrossRefGoogle Scholar
  27. 27.
    De Cougny HL, Shephard MS (1999) Parallel refinement and coarsening of tetrahedral meshes. Int J Numer Methods Eng 46:1101–1125CrossRefGoogle Scholar
  28. 28.
    de la Puente J, Dumbser M, Käser M, Igel H (2007) Discontinuous Galerkin methods for wave propagation in poroelastic media. to appear in GeophysicsGoogle Scholar
  29. 29.
    de la Puente J, Käser M, Dumbser M, Igel H (2007) An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes IV: Anisotropy. Geophys J Int 169(3):1210–1228Google Scholar
  30. 30.
    di Prisco C, Stupazzini M, Zambelli C (2007) Non‐linear SEM numerical analyses of dry dense sand specimens under rapid and dynamic loading. Int J Numer Anal Methods Geomech 31(6):757–788CrossRefGoogle Scholar
  31. 31.
    Dormy E, Tarantola A (1995) Numerical simulation of elastic wave propagation using a finite volume method. J Geophys Res 100(B2):2123–2134CrossRefGoogle Scholar
  32. 32.
    Dumbser M (2005) Arbitrary high order schemes for the solution of hyperbolic conservation laws in complex domains. Shaker, AachenGoogle Scholar
  33. 33.
    Dumbser M, Käser M (2006) An arbitrary high order discontinuous galerkin method for elastic waves on unstructured meshes II: The three-dimensional isotropic case. Geophys J Int 167:319–336Google Scholar
  34. 34.
    Dumbser M, Käser M (2007) Arbitrary high order non‐oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J Comput Phys 221:693–723. doi:10.1016/j.jcp.2006.06.043 Google Scholar
  35. 35.
    Dumbser M, Munz CD (2005) Arbitrary high order discontinuous Galerkin schemes. In: Cordier S, Goudon T, Gutnic M, Sonnendrucker E (eds) Numerical methods for hyperbolic and kinetic problems. IRMA series in mathematics and theoretical physics. EMS Publishing, Zurich, pp 295–333CrossRefGoogle Scholar
  36. 36.
    Dumbser M, Käser M, Toro EF (2007) An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes – V. Local time stepping and p‑adaptivity. Geophys J Int 171:695–717Google Scholar
  37. 37.
    Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet Inter 25:297–356CrossRefGoogle Scholar
  38. 38.
    Ewald M, Igel H, Hinzen K-G, Scherbaum F (2006) Basin‐related effects on ground motion for earthquake scenarios in the lower rhine embayment. Geophys J Int 166:197–212CrossRefGoogle Scholar
  39. 39.
    Faccioli E, Maggio F, Quarteroni A, Tagliani A (1996) Spectral‐domain decomposition methods for the solution of acoustic and elastic wave equation. Geophysics 61:1160–1174CrossRefGoogle Scholar
  40. 40.
    Faccioli E, Maggio F, Paolucci R, Quarteroni A (1997) 2D and 3D elastic wave propagation by a pseudo‐spectral domain decomposition method. J Seismol 1:237–251CrossRefGoogle Scholar
  41. 41.
    Faccioli E, Vanini M, Paolucci R, Stupazzini M (2005) Comment on “Domain reduction method for three‐dimensional earthquake modeling in localized regions, part I: Theory.” by Bielak J, Loukakis K, Hisada Y, Yoshimura C, and “Part II: Verification and Applications.” by Yoshimura C, Bielak J, Hisada Y, Fernández A. Bull Seism Soc Am 95:763–769CrossRefGoogle Scholar
  42. 42.
    Falk J, Tessmer E, Gajewski D (1996) Efficient finite‐difference modelling of seismic waves using locally adjustable time steps. Geophys Prosp 46:603–616CrossRefGoogle Scholar
  43. 43.
    Falk J, Tessmer E, Gajewski D (1996) Tube wave modelling by the finite differences method with varying grid spacing. Pure Appl Geoph 148:77–93CrossRefGoogle Scholar
  44. 44.
    Fernandez A, Bielak J, Prentice C (2006) Urban seismology; City effects on earthquake ground motion and effects of spatial distribution of ground motion on structural response paper presented at 2006 annual meeting. Seism Res Lett 77(2):305Google Scholar
  45. 45.
    Fornberg B (1996) A practical guide to pseudospectral methods. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  46. 46.
    Fuchs K, Müller G (1971) Computation of synthetic seismograms with the reflectivity method and comparison with observations. Geophys J Royal Astronom Soc 23(4):417–33Google Scholar
  47. 47.
    Furumura T, Takenaka H (1996) 2.5-D modeling of elastic waves using the pseudospectral method. Geophys J Int 124:820–832CrossRefGoogle Scholar
  48. 48.
    Geller RJ, Takeuchi N (1998) Optimally accurate second‐order time‐domain finite difference scheme for the elastic equation of motion: One‐dimensional case. Geophys J Int 135:48–62CrossRefGoogle Scholar
  49. 49.
    Graves RW (1993) Modeling three‐dimensional site response effects in the Marina district basin, San Francisco, California. Bull Seism Soc Am 83:1042–1063Google Scholar
  50. 50.
    Hestholm SO, Ruud BO (1998) 3-D finite‐difference elastic wave modeling including surface topography. Geophysics 63:613–622CrossRefGoogle Scholar
  51. 51.
    Holberg O (1987) Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena. Geophys Prospect 35:629–655CrossRefGoogle Scholar
  52. 52.
    Igel H (1999) Wave propagation through 3-D spherical sections using the Chebyshev spectral method. Geop J Int 136:559–567CrossRefGoogle Scholar
  53. 53.
    Igel H, Gudmundsson O (1997) Frequency‐dependent effects on travel times and waveforms of long‐period S and SS waves. Phys Earth Planet Inter 104:229–246CrossRefGoogle Scholar
  54. 54.
    Igel H, Weber M (1995) SH-wave propagation in the whole mantle using high-order finite differences. Geophys Res Lett 22(6):731–734CrossRefGoogle Scholar
  55. 55.
    Igel H, Weber M (1996) P-SV wave propagation in the Earth's mantle using finite‐differences: Application to heterogeneous lowermost mantle structure. Geophys Res Lett 23:415–418CrossRefGoogle Scholar
  56. 56.
    Igel H, Mora P, Riollet B (1995) Anisotropic wave propagation through finite‐difference grids. Geophysics 60:1203–1216CrossRefGoogle Scholar
  57. 57.
    Igel H, Nissen‐Meyer T, Jahnke G (2001) Wave propagation in 3-D spherical sections: Effects of subduction zones. Phys Earth Planet Inter 132:219–234Google Scholar
  58. 58.
    Jahnke G, Igel H, Cochard A, Thorne M (2007) Parallel implementation of axisymmetric SH wave propagation in spherical geometry. Geophys J Int (in print)Google Scholar
  59. 59.
    Jastram C, Tessmer E (1994) Elastic modelling on a grid with vertically varying spacing. Geophys Prosp 42:357–370CrossRefGoogle Scholar
  60. 60.
    Karypis G, Kumar V (1998) Multilevel k-way Partitioning Scheme for Irregular Graphs. J Parallel Distrib Comput 48(1):96–129CrossRefGoogle Scholar
  61. 61.
    Kelly KR, Ward RW, Treitel S, Alford RM (1976) Synthetic seismograms: A finite‐difference approach. Geophysics 41:2–27CrossRefGoogle Scholar
  62. 62.
    Kennett BLN (2002) The seismic wavefield, vol I + II. Cambridge University Press, CambridgeGoogle Scholar
  63. 63.
    Komatitsch D, Tromp J (2002) Spectral‐element simulations of global seismic wave propagation, part I: Validation. Geophys J Int 149:390–412CrossRefGoogle Scholar
  64. 64.
    Komatitsch D, Tromp J (2002) Spectral‐element simulations of global seismic wave propagation, part II: 3-D models, oceans, rotation, and gravity. Geophys J Int 150:303–318CrossRefGoogle Scholar
  65. 65.
    Komatitsch D, Vilotte JP (1998) The spectral‐element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull Seism Soc Am 88:368–392Google Scholar
  66. 66.
    Komatitsch D, Coutel F, Mora P (1996) Tensorial formulation of the wave equation for modelling curved interfaces. Geophys J Int 127(1):156–168CrossRefGoogle Scholar
  67. 67.
    Kosloff D, Baysal E (1982) Forward modeling by a fourier method. Geophysics 47(10):1402–1412CrossRefGoogle Scholar
  68. 68.
    Krishnan S, Ji C, Komatitsch D, Tromp J (2006) Case studies of damage to tall steel moment‐frame buildings in Southern California during large San Andreas earthquakes. Bull Seismol Soc Am 96(4A):1523–1537CrossRefGoogle Scholar
  69. 69.
    Krishnan S, Ji C, Komatitsch D, Tromp J (2006) Performance of two 18-story steel moment‐frame buildings in Southern California during two large simulated San Andreas earthquakes. Earthq Spectra 22(4):1035–106CrossRefGoogle Scholar
  70. 70.
    Käser M, Dumbser M (2006) An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes I: The two‐dimensional isotropic case with external source terms. Geophys J Int 166:855–877Google Scholar
  71. 71.
    Käser M, Dumbser M, de la Puente J, Igel H (2007) An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes III: Viscoelastic attenuation. Geophys J Int 168(1):224–242Google Scholar
  72. 72.
    Käser M, Igel H (2001) Numerical simulation of 2D wave propagation on unstructured grids using explicit differential operators. Geophys Prospect 49(5):607–619Google Scholar
  73. 73.
    Käser M, Igel H, Sambridge M, Braun J (2001) A comparative study of explicit differential operators on arbitrary grids. J Comput Acoust 9(3):1111–1125Google Scholar
  74. 74.
    Kwak D-Y, Im Y-T (2002) Remeshing for metal forming simulations – part II: Three dimensional hexahedral mesh generation. Int J Numer Methods Eng 53:2501–2528CrossRefGoogle Scholar
  75. 75.
    LeVeque RL (2002) Finite volume methods for hyperbolic problems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  76. 76.
    Levander AR (1988) Fourth‐order finite‐difference P-SV seismograms. Geophysics 53:1425–1436CrossRefGoogle Scholar
  77. 77.
    Madariaga R (1976) Dynamics of an expanding circular fault. Bull Seismol Soc Am 66(3):639–66Google Scholar
  78. 78.
    Magnier S-A, Mora P, Tarantola A (1994) Finite differences on minimal grids. Geophysics 59:1435–1443CrossRefGoogle Scholar
  79. 79.
    Marfurt KJ (1984) Accuracy of finite‐difference and finite‐element modeling of the scalar and elastic wave equations. Geophysics 49:533–549CrossRefGoogle Scholar
  80. 80.
    Mercerat ED, Vilotte JP, Sanchez‐Sesma FJ (2006) Triangular spectral element simulation of two‐dimensional elastic wave propagation using unstructured triangular grids. Geophys J Int 166(2):679–698Google Scholar
  81. 81.
    METIS glaros.dtc.umn.edu/gkhome/views/metis. Accessed 1 Jul 2008
  82. 82.
    Moczo P (1989) Finite‐difference techniques for SH-waves in 2-D media using irregular grids – Application to the seismic response problem. Geophys J Int 99:321–329CrossRefGoogle Scholar
  83. 83.
    Moczo P, Kristek J, Halada L (2000) 3D 4th-order staggered grid finite‐difference schemes: Stability and grid dispersion. Bull Seism Soc Am 90:587–603CrossRefGoogle Scholar
  84. 84.
    Montelli R, Nolet G, Dahlen FA, Masters G, Engdahl ER, Hung S (2004) Finite‐frequency tomography reveals a variety of plumes in the mantle. Science 303(5656):338–343CrossRefGoogle Scholar
  85. 85.
    Müller G (1977) Earth‐flattening approximation for body waves derived from geometric ray theory – improvements, corrections and range of applicability. J Geophys 42:429–436Google Scholar
  86. 86.
    Nissen-Meyer T, Fournier A, Dahlen FA (2007) A 2-D spectral-element method for computing spherical-earth seismograms – I. Moment-tensor source. Geophys J Int 168:1067–1092CrossRefGoogle Scholar
  87. 87.
    Ohminato T, Chouet BA (1997) A free‐surface boundary condition for including 3D topography in the finite‐difference method. Bull Seism Soc Am 87:494–515Google Scholar
  88. 88.
    Opršal I, J Zahradník (1999) Elastic finite‐difference method for irregular grids. Geophysics 64:240–250Google Scholar
  89. 89.
    Pitarka A (1999) 3D elastic finite‐difference modeling of seismic motion using staggered grids with nonuniform spacing. Bull Seism Soc Am 89:54–68Google Scholar
  90. 90.
    Priolo E, Carcione JM, Seriani G (1996) Numerical simulation of interface waves by high-order spectral modeling techniques. J Acoust Soc Am 95:681–693CrossRefGoogle Scholar
  91. 91.
    Reed WH, Hill TR (1973) Triangular mesh methods for the neutron transport equation. Technical Report, LA-UR-73-479, Los Alamos Scientific LaboratoryGoogle Scholar
  92. 92.
    Ripperger J, Igel H, Wassermann J (2004) Seismic wave simulation in the presence of real volcano topography. J Volcanol Geotherm Res 128:31–44CrossRefGoogle Scholar
  93. 93.
    Scandella L (2007) Numerical evaluation of transient ground strains for the seismic response analyses of underground structures. Ph D Thesis, Milan University of Technology, MilanGoogle Scholar
  94. 94.
    SCEC www.scec.org. Accessed 1 Jul 2008
  95. 95.
    Schneiders R (2000) Octree‐Based Hexahedral Mesh Generation. Int J Comput Geom Appl 10(4):383–398CrossRefGoogle Scholar
  96. 96.
    Schwartzkopff T, Munz CD, Toro EF (2002) ADER: A high-order approach for linear hyperbolic systems in 2D. J Sci Comput 17:231–240CrossRefGoogle Scholar
  97. 97.
    Schwartzkopff T, Dumbser M, Munz CD (2004) Fast high order ADER schemes for linear hyperbolic equations. J Comput Phys 197:532–539CrossRefGoogle Scholar
  98. 98.
    Seriani G, Priolo E, Carcione JM, Padovani E (1992) High-order spectral element method for elastic wave modeling: 62nd Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1285–1288Google Scholar
  99. 99.
    Shepherd JF (2007) Topologic and geometric constraint‐based hexahedral mesh generation. Ph.D. Thesis on Computer Science, School of Computing The Universiy of Utah, Salt Lake CityGoogle Scholar
  100. 100.
    Sieminski A, Liu Q, Trampert J, Tromp J (2007) Finite‐frequency sensitivity of surface waves to anisotropy based upon adjoint methods. Geophys J Int 168:1153–1174CrossRefGoogle Scholar
  101. 101.
    SPICE www.spice-rtn.org. Accessed 1 Jul 2008
  102. 102.
    Stupazzini M (2004) A spectral element approach for 3D dynamic soil‐structure interaction problems. Ph D Thesis, Milan University of Technology, MilanGoogle Scholar
  103. 103.
    Takeuchi N, Geller RJ (2000) Optimally accurate second order time‐domain finite difference scheme for computing synthetic seismograms in 2-D and 3-D media. Phys Earth Planet Int 119:99–131CrossRefGoogle Scholar
  104. 104.
    Tape C, Liu Q, Tromp J (2007) Finite‐frequency tomography using adjoint methods: Methodology and examples using membrane surface waves. Geophys J Int 168:1105–1129CrossRefGoogle Scholar
  105. 105.
    Tarantola A (1986) A strategy for nonlinear elastic inversion of seismic reflection data. Geophysics 51(10):1893–1903CrossRefGoogle Scholar
  106. 106.
    Tessmer E (2000) Seismic finite‐difference modeling with spatially varying time teps. Geophysics 65:1290–1293CrossRefGoogle Scholar
  107. 107.
    Tessmer K, Kosloff D (1996) 3-D elastic modeling with surface topography by a Chebychev spectral method. Geophysics 59:464–473CrossRefGoogle Scholar
  108. 108.
    Tessmer E, Kessler D, Kosloff K, Behle A (1996) Multi‐domain Chebyshev–Fourier method for the solution of the equations of motion of dynamic elasticity. J Comput Phys 100:355–363CrossRefGoogle Scholar
  109. 109.
    Thomas C, Igel H, Weber M, Scherbaum F (2000) Acoustic simulation of P-wave propagation in a heterogeneous spherical earth: Numerical method and application to precursor energy to PKPdf. Geophys J Int 141:307–320CrossRefGoogle Scholar
  110. 110.
    Thorne M, Lay T, Garnero E, Jahnke G, Igel H (2007) 3-D seismic imaging of the D\({^{\prime\prime}}\) region beneath the Cocos Plate. Geophys J Int 170:635–648CrossRefGoogle Scholar
  111. 111.
    Titarev VA, Toro EF (2002) ADER: Arbitrary high order Godunov approach. J Sci Comput 17:609–618CrossRefGoogle Scholar
  112. 112.
    Toro EF (1999) Riemann solvers and numerical methods for fluid dynamics. Springer, BerlinGoogle Scholar
  113. 113.
    Toro EF, Millington AC, Nejad LA (2001) Towards very high order Godunov schemes, in Godunov methods; Theory and applications. Kluwer/Plenum, Oxford, pp 907–940Google Scholar
  114. 114.
    Toyokuni G, Takenaka H, Wang Y, Kennett BLN (2005) Quasi‐spherical approach for seismic wave modeling in a 2-D slice of a global earth model with lateral heterogeneity. Geophys Res Lett 32:L09305CrossRefGoogle Scholar
  115. 115.
    Van der Hilst RD (2004) Changing views on Earth's deep mantle. Science 306:817–818CrossRefGoogle Scholar
  116. 116.
    Virieux J (1984) SH-wave propagation in heterogeneous media: Velocity‐stress inite‐difference method. Geophysics 49:1933–1957CrossRefGoogle Scholar
  117. 117.
    Virieux J (1986) P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method. Geophysics 51:889–901CrossRefGoogle Scholar
  118. 118.
    Woodhouse JH, Dziewonski AM (1984) Mapping the upper mantle: Three dimensional modelling of earth structure by inversion of seismic waveforms. J Geophys Res 89:5953–5986CrossRefGoogle Scholar
  119. 119.
    Yoshimura C, Bielak J, Hisada Y, Fernández A (2003) Domain reduction method for three‐dimensional earthquake modeling in localized regions, part II: Verification and applications. Bull Seism Soc Am 93:825–841Google Scholar
  120. 120.
    Zambelli C (2006) Experimental and theoretical analysis of the mechanical behaviour of cohesionless soils under cyclic‐dynamic loading. Ph D Thesis, Milan University of Technology, MilanGoogle Scholar
  121. 121.
    Zienckiewicz O, Taylor RL (1989) The finite element method, vol 1. McGraw‐Hill, LondonGoogle Scholar

Books and Reviews

  1. 122.
    Carcione JM, Herman GC, ten Kroode APE (2002) Seismic modelling. Geophysics 67:1304–1325CrossRefGoogle Scholar
  2. 123.
    Mozco P, Kristek J, Halada L (2004) The finite‐difference method for seismologists: An introduction. Comenius University, Bratislava. Available in pdf format at ftp://ftp.nuquake.eu/pub/Papers
  3. 124.
    Moczo P, Kristek J, Galis M, Pazak P, Balazovjech M (2007) The finite difference and finite‐element modelling of seismic wave propagation and earthquake motion. Acta Physica Slovaca, 57(2)177–406Google Scholar
  4. 125.
    Wu RS, Maupin V (eds) (2006) Advances in wave propagation in heterogeneous earth. In: Dmowska R (ed) Advances in geophysics, vol 48. Academic/Elsevier, LondonGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesLudwig-Maximilians-UniversityMunichGermany
  2. 2.Department of Structural EngineeringPolitecnico di MilanoMilanoItaly