Skip to main content

Seismic Wave Propagation in Media with Complex Geometries, Simulation of

  • Reference work entry

Article Outline

Glossary

Definition of the Subject

Introduction

The Evolution of Numerical Methods and Grids

3D Wave Propagation on Hexahedral Grids: Soil-Structure Interactions

3D Wave Propagation on Tetrahedral Grids: Application to Volcanology

Local Time Stepping: ∆t-Adaptation

Discussion and Future Directions

Acknowledgments

Bibliography

Keywords

  • Ground Motion
  • Spectral Element
  • Tetrahedral Mesh
  • Spectral Element Method
  • Seismic Wave Propagation

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4419-7695-6_41
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   649.99
Price excludes VAT (USA)
  • ISBN: 978-1-4419-7695-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   599.99
Price excludes VAT (USA)
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Abbreviations

Numerical methods:

Processes in nature are often described by partial differential equations. Finding solutions to those equations is at the heart of many studies aiming at the explanation of observed data. Simulations of realistic physical processes requires generally the use of numerical methods – a special branch of applied mathematics – that approximate the partial differential equations and allows solving them on computers. Examples are the finite‐difference, finite‐element, or finite‐volume methods.

Spectral elements:

The spectral element method is an extension of the finite element method that makes use of specific basis functions describing the solutions inside each element. These basis functions (e. g., Chebyshev or Legendre polynomials) allow the interpolation of functions exactly at certain collocation points. This is often termed spectral accuracy.

Discontinuous Galerkin method:

The discontinuous Galerkin method is a flavor of the finite‐element method that allows discontinuous behavior of the spatial or temporal fields at the element boundaries. The discontinuities – that might be small in the case of continuous physical fields such as seismic waves – then define so‐called Riemann problems that can be handled using the concepts from finite‐volume techniques. Therefore, the approximate solution is updated via numerical fluxes across the element boundaries.

Parallel algorithms:

All modern supercomputers make use of parallel architectures. This means that a large number of processors are performing (different) tasks on different data at the same time. Numerical algorithms need to be adapted to these hardware architectures by using specific programming paradigms (e. g., the message passing interface MPI). The computational efficiency of such algorithms strongly depends on the specific parallel nature of the problem to be solved, and the requirement for inter‐processor communication.

Grid generation:

Most numerical methods are based on the calculation of the solutions at a large set of points (grids) that are either static or depend on time (adaptive grids). These grids often need to be adapted to the specific geometrical properties of the objects to be modeled (volcano, reservoir, globe). Grids may be designed to follow domain boundaries and internal surfaces. Before specific numerical solvers are employed the grid points are usually connected to form triangles or rectangles in 2D or hexahedra or tetrahedra in 3D.

Bibliography

Primary Literature

  1. Alterman Z, Karal FC (1968) Propagation of elastic waves in layered media by finite‐difference methods. Bull Seism Soc Am 58:367–398

    Google Scholar 

  2. Benzley SE, Harris NJ, Scott M, Borden M, Owen SJ (2005) Conformal refinement and coarsening of unstructured hexahedral meshes. J Comput Inf Sci Eng 5:330–337

    CrossRef  Google Scholar 

  3. Bey J (1995) Tetrahedral grid refinement. Computing 55:355–378

    Google Scholar 

  4. Bielak J, Loukakis K, Hisada Y, Yoshimura C (2003) Domain reduction method for three‐dimensional earthquake modeling in localized regions, Part I: Theory. Bull Seism Soc Am 93:817–824

    Google Scholar 

  5. Bonilla LF, Archuleta RJ, Lavallée D (2005) Hysteretic and dilatant behavior of cohesionless soils and their effects on nonlinear site response: Field data observations and modelling. Bull Seism Soc Am 95(6):2373–2395

    Google Scholar 

  6. Boore D (1972) Finite‐difference methods for seismic wave propagation in heterogeneous materials. In: Bolt BA (ed) Methods in Computational Physics, vol 11. Academic Press, New York

    Google Scholar 

  7. Braun J, Sambridge MS (1995) A numerical method for solving partial differential equations on highly irregular evolving grids. Nature 376:655–660

    CrossRef  CAS  Google Scholar 

  8. Bunge HP, Tromp J (2003) Supercomputing moves to universities and makes possible new ways to organize computational research. EOS 84(4):30, 33

    CrossRef  Google Scholar 

  9. Carcione JM, Wang J-P (1993) A Chebyshev collocation method for the elastodynamic equation in generalised coordinates. Comp Fluid Dyn 2:269–290

    Google Scholar 

  10. Carcione JM, Kosloff D, Kosloff R (1988) Viscoacoustic wave propagation simulation in the earth. Geophysics 53:769–777

    CrossRef  Google Scholar 

  11. Carcione JM, Kosloff D, Behle A, Seriani G (1992) A spectral scheme for wave propagation simulation in 3-D elastic‐anisotropic media. Geophysics 57:1593–1607

    CrossRef  Google Scholar 

  12. Carey G (1997) Computational grids: Generation, adaptation, and solution strategies. Taylor Francis, New York

    Google Scholar 

  13. Cerveny V (2001) Seismic ray theory. Cambridge University Press, Cambridge

    CrossRef  Google Scholar 

  14. Chaljub E, Tarantola A (1997) Sensitivity of SS precursors to topography on the upper‐mantle 660-km discontinuity. Geophys Res Lett 24(21):2613–2616

    CrossRef  Google Scholar 

  15. Chaljub E, Komatitsch D, Vilotte JP, Capdeville Y, Valette B, Festa G (2007) Spectral element analysis in seismology. In: Wu R-S, Maupin V (eds) Advances in wave propagation in heterogeneous media. Advances in Geophysics, vol 48. Elsevier, London, pp 365–419

    CrossRef  Google Scholar 

  16. Chapman CH (2004) Fundamentals of seismic wave propagation. Cambridge University Press, Cambridge

    CrossRef  Google Scholar 

  17. CIG www.geodynamics.org. Accessed 1 Jul 2008

  18. Cockburn B, Shu CW (1989) TVB Runge“Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework. Math Comp 52:411–435

    Google Scholar 

  19. Cockburn B, Shu CW (1991) The Runge–Kutta local projection P1‐Discontinuous Galerkin finite element method for scalar conservation laws. Math Model Numer Anal 25:337–361

    Google Scholar 

  20. Cockburn B, Shu CW (1998) The Runge–Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems. J Comput Phys 141:199–224

    CrossRef  Google Scholar 

  21. Cockburn B, Lin SY, Shu CW (1989) TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems. J Comput Phys 84:90–113

    CrossRef  Google Scholar 

  22. Cockburn B, Hou S, Shu CW (1990) The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math Comp 54:545–581

    Google Scholar 

  23. Cockburn B, Karniadakis GE, Shu CW (2000) Discontinuous Galerkin methods, theory, computation and applications. LNCSE, vol 11. Springer, New York

    Google Scholar 

  24. Courant R, Friedrichs KO, Lewy H (1928) Über die partiellen Differenzialgleichungen der mathematischen Physik. Mathematische Annalen 100:32–74

    CrossRef  Google Scholar 

  25. CUBIT cubit.sandia.gov. Accessed 1 Jul 2008

  26. Dablain MA (1986) The application of high-order differencing to the scalar wave equation. Geophysics 51:54–66

    CrossRef  Google Scholar 

  27. De Cougny HL, Shephard MS (1999) Parallel refinement and coarsening of tetrahedral meshes. Int J Numer Methods Eng 46:1101–1125

    CrossRef  Google Scholar 

  28. de la Puente J, Dumbser M, Käser M, Igel H (2007) Discontinuous Galerkin methods for wave propagation in poroelastic media. to appear in Geophysics

    Google Scholar 

  29. de la Puente J, Käser M, Dumbser M, Igel H (2007) An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes IV: Anisotropy. Geophys J Int 169(3):1210–1228

    Google Scholar 

  30. di Prisco C, Stupazzini M, Zambelli C (2007) Non‐linear SEM numerical analyses of dry dense sand specimens under rapid and dynamic loading. Int J Numer Anal Methods Geomech 31(6):757–788

    CrossRef  Google Scholar 

  31. Dormy E, Tarantola A (1995) Numerical simulation of elastic wave propagation using a finite volume method. J Geophys Res 100(B2):2123–2134

    CrossRef  Google Scholar 

  32. Dumbser M (2005) Arbitrary high order schemes for the solution of hyperbolic conservation laws in complex domains. Shaker, Aachen

    Google Scholar 

  33. Dumbser M, Käser M (2006) An arbitrary high order discontinuous galerkin method for elastic waves on unstructured meshes II: The three-dimensional isotropic case. Geophys J Int 167:319–336

    Google Scholar 

  34. Dumbser M, Käser M (2007) Arbitrary high order non‐oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems. J Comput Phys 221:693–723. doi:10.1016/j.jcp.2006.06.043

    Google Scholar 

  35. Dumbser M, Munz CD (2005) Arbitrary high order discontinuous Galerkin schemes. In: Cordier S, Goudon T, Gutnic M, Sonnendrucker E (eds) Numerical methods for hyperbolic and kinetic problems. IRMA series in mathematics and theoretical physics. EMS Publishing, Zurich, pp 295–333

    CrossRef  Google Scholar 

  36. Dumbser M, Käser M, Toro EF (2007) An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes – V. Local time stepping and p‑adaptivity. Geophys J Int 171:695–717

    Google Scholar 

  37. Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet Inter 25:297–356

    CrossRef  Google Scholar 

  38. Ewald M, Igel H, Hinzen K-G, Scherbaum F (2006) Basin‐related effects on ground motion for earthquake scenarios in the lower rhine embayment. Geophys J Int 166:197–212

    CrossRef  Google Scholar 

  39. Faccioli E, Maggio F, Quarteroni A, Tagliani A (1996) Spectral‐domain decomposition methods for the solution of acoustic and elastic wave equation. Geophysics 61:1160–1174

    CrossRef  Google Scholar 

  40. Faccioli E, Maggio F, Paolucci R, Quarteroni A (1997) 2D and 3D elastic wave propagation by a pseudo‐spectral domain decomposition method. J Seismol 1:237–251

    CrossRef  Google Scholar 

  41. Faccioli E, Vanini M, Paolucci R, Stupazzini M (2005) Comment on “Domain reduction method for three‐dimensional earthquake modeling in localized regions, part I: Theory.” by Bielak J, Loukakis K, Hisada Y, Yoshimura C, and “Part II: Verification and Applications.” by Yoshimura C, Bielak J, Hisada Y, Fernández A. Bull Seism Soc Am 95:763–769

    CrossRef  Google Scholar 

  42. Falk J, Tessmer E, Gajewski D (1996) Efficient finite‐difference modelling of seismic waves using locally adjustable time steps. Geophys Prosp 46:603–616

    CrossRef  Google Scholar 

  43. Falk J, Tessmer E, Gajewski D (1996) Tube wave modelling by the finite differences method with varying grid spacing. Pure Appl Geoph 148:77–93

    CrossRef  Google Scholar 

  44. Fernandez A, Bielak J, Prentice C (2006) Urban seismology; City effects on earthquake ground motion and effects of spatial distribution of ground motion on structural response paper presented at 2006 annual meeting. Seism Res Lett 77(2):305

    Google Scholar 

  45. Fornberg B (1996) A practical guide to pseudospectral methods. Cambridge University Press, Cambridge

    CrossRef  Google Scholar 

  46. Fuchs K, Müller G (1971) Computation of synthetic seismograms with the reflectivity method and comparison with observations. Geophys J Royal Astronom Soc 23(4):417–33

    Google Scholar 

  47. Furumura T, Takenaka H (1996) 2.5-D modeling of elastic waves using the pseudospectral method. Geophys J Int 124:820–832

    CrossRef  Google Scholar 

  48. Geller RJ, Takeuchi N (1998) Optimally accurate second‐order time‐domain finite difference scheme for the elastic equation of motion: One‐dimensional case. Geophys J Int 135:48–62

    CrossRef  Google Scholar 

  49. Graves RW (1993) Modeling three‐dimensional site response effects in the Marina district basin, San Francisco, California. Bull Seism Soc Am 83:1042–1063

    Google Scholar 

  50. Hestholm SO, Ruud BO (1998) 3-D finite‐difference elastic wave modeling including surface topography. Geophysics 63:613–622

    CrossRef  Google Scholar 

  51. Holberg O (1987) Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena. Geophys Prospect 35:629–655

    CrossRef  Google Scholar 

  52. Igel H (1999) Wave propagation through 3-D spherical sections using the Chebyshev spectral method. Geop J Int 136:559–567

    CrossRef  Google Scholar 

  53. Igel H, Gudmundsson O (1997) Frequency‐dependent effects on travel times and waveforms of long‐period S and SS waves. Phys Earth Planet Inter 104:229–246

    CrossRef  Google Scholar 

  54. Igel H, Weber M (1995) SH-wave propagation in the whole mantle using high-order finite differences. Geophys Res Lett 22(6):731–734

    CrossRef  Google Scholar 

  55. Igel H, Weber M (1996) P-SV wave propagation in the Earth's mantle using finite‐differences: Application to heterogeneous lowermost mantle structure. Geophys Res Lett 23:415–418

    CrossRef  Google Scholar 

  56. Igel H, Mora P, Riollet B (1995) Anisotropic wave propagation through finite‐difference grids. Geophysics 60:1203–1216

    CrossRef  Google Scholar 

  57. Igel H, Nissen‐Meyer T, Jahnke G (2001) Wave propagation in 3-D spherical sections: Effects of subduction zones. Phys Earth Planet Inter 132:219–234

    Google Scholar 

  58. Jahnke G, Igel H, Cochard A, Thorne M (2007) Parallel implementation of axisymmetric SH wave propagation in spherical geometry. Geophys J Int (in print)

    Google Scholar 

  59. Jastram C, Tessmer E (1994) Elastic modelling on a grid with vertically varying spacing. Geophys Prosp 42:357–370

    CrossRef  Google Scholar 

  60. Karypis G, Kumar V (1998) Multilevel k-way Partitioning Scheme for Irregular Graphs. J Parallel Distrib Comput 48(1):96–129

    CrossRef  Google Scholar 

  61. Kelly KR, Ward RW, Treitel S, Alford RM (1976) Synthetic seismograms: A finite‐difference approach. Geophysics 41:2–27

    CrossRef  Google Scholar 

  62. Kennett BLN (2002) The seismic wavefield, vol I + II. Cambridge University Press, Cambridge

    Google Scholar 

  63. Komatitsch D, Tromp J (2002) Spectral‐element simulations of global seismic wave propagation, part I: Validation. Geophys J Int 149:390–412

    CrossRef  Google Scholar 

  64. Komatitsch D, Tromp J (2002) Spectral‐element simulations of global seismic wave propagation, part II: 3-D models, oceans, rotation, and gravity. Geophys J Int 150:303–318

    CrossRef  Google Scholar 

  65. Komatitsch D, Vilotte JP (1998) The spectral‐element method: An efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull Seism Soc Am 88:368–392

    Google Scholar 

  66. Komatitsch D, Coutel F, Mora P (1996) Tensorial formulation of the wave equation for modelling curved interfaces. Geophys J Int 127(1):156–168

    CrossRef  Google Scholar 

  67. Kosloff D, Baysal E (1982) Forward modeling by a fourier method. Geophysics 47(10):1402–1412

    CrossRef  Google Scholar 

  68. Krishnan S, Ji C, Komatitsch D, Tromp J (2006) Case studies of damage to tall steel moment‐frame buildings in Southern California during large San Andreas earthquakes. Bull Seismol Soc Am 96(4A):1523–1537

    CrossRef  Google Scholar 

  69. Krishnan S, Ji C, Komatitsch D, Tromp J (2006) Performance of two 18-story steel moment‐frame buildings in Southern California during two large simulated San Andreas earthquakes. Earthq Spectra 22(4):1035–106

    CrossRef  Google Scholar 

  70. Käser M, Dumbser M (2006) An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes I: The two‐dimensional isotropic case with external source terms. Geophys J Int 166:855–877

    Google Scholar 

  71. Käser M, Dumbser M, de la Puente J, Igel H (2007) An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes III: Viscoelastic attenuation. Geophys J Int 168(1):224–242

    Google Scholar 

  72. Käser M, Igel H (2001) Numerical simulation of 2D wave propagation on unstructured grids using explicit differential operators. Geophys Prospect 49(5):607–619

    Google Scholar 

  73. Käser M, Igel H, Sambridge M, Braun J (2001) A comparative study of explicit differential operators on arbitrary grids. J Comput Acoust 9(3):1111–1125

    Google Scholar 

  74. Kwak D-Y, Im Y-T (2002) Remeshing for metal forming simulations – part II: Three dimensional hexahedral mesh generation. Int J Numer Methods Eng 53:2501–2528

    CrossRef  Google Scholar 

  75. LeVeque RL (2002) Finite volume methods for hyperbolic problems. Cambridge University Press, Cambridge

    CrossRef  Google Scholar 

  76. Levander AR (1988) Fourth‐order finite‐difference P-SV seismograms. Geophysics 53:1425–1436

    CrossRef  Google Scholar 

  77. Madariaga R (1976) Dynamics of an expanding circular fault. Bull Seismol Soc Am 66(3):639–66

    Google Scholar 

  78. Magnier S-A, Mora P, Tarantola A (1994) Finite differences on minimal grids. Geophysics 59:1435–1443

    CrossRef  Google Scholar 

  79. Marfurt KJ (1984) Accuracy of finite‐difference and finite‐element modeling of the scalar and elastic wave equations. Geophysics 49:533–549

    CrossRef  Google Scholar 

  80. Mercerat ED, Vilotte JP, Sanchez‐Sesma FJ (2006) Triangular spectral element simulation of two‐dimensional elastic wave propagation using unstructured triangular grids. Geophys J Int 166(2):679–698

    Google Scholar 

  81. METIS glaros.dtc.umn.edu/gkhome/views/metis. Accessed 1 Jul 2008

  82. Moczo P (1989) Finite‐difference techniques for SH-waves in 2-D media using irregular grids – Application to the seismic response problem. Geophys J Int 99:321–329

    CrossRef  Google Scholar 

  83. Moczo P, Kristek J, Halada L (2000) 3D 4th-order staggered grid finite‐difference schemes: Stability and grid dispersion. Bull Seism Soc Am 90:587–603

    CrossRef  Google Scholar 

  84. Montelli R, Nolet G, Dahlen FA, Masters G, Engdahl ER, Hung S (2004) Finite‐frequency tomography reveals a variety of plumes in the mantle. Science 303(5656):338–343

    CrossRef  CAS  Google Scholar 

  85. Müller G (1977) Earth‐flattening approximation for body waves derived from geometric ray theory – improvements, corrections and range of applicability. J Geophys 42:429–436

    Google Scholar 

  86. Nissen-Meyer T, Fournier A, Dahlen FA (2007) A 2-D spectral-element method for computing spherical-earth seismograms – I. Moment-tensor source. Geophys J Int 168:1067–1092

    CrossRef  Google Scholar 

  87. Ohminato T, Chouet BA (1997) A free‐surface boundary condition for including 3D topography in the finite‐difference method. Bull Seism Soc Am 87:494–515

    Google Scholar 

  88. Opršal I, J Zahradník (1999) Elastic finite‐difference method for irregular grids. Geophysics 64:240–250

    Google Scholar 

  89. Pitarka A (1999) 3D elastic finite‐difference modeling of seismic motion using staggered grids with nonuniform spacing. Bull Seism Soc Am 89:54–68

    Google Scholar 

  90. Priolo E, Carcione JM, Seriani G (1996) Numerical simulation of interface waves by high-order spectral modeling techniques. J Acoust Soc Am 95:681–693

    CrossRef  Google Scholar 

  91. Reed WH, Hill TR (1973) Triangular mesh methods for the neutron transport equation. Technical Report, LA-UR-73-479, Los Alamos Scientific Laboratory

    Google Scholar 

  92. Ripperger J, Igel H, Wassermann J (2004) Seismic wave simulation in the presence of real volcano topography. J Volcanol Geotherm Res 128:31–44

    CrossRef  CAS  Google Scholar 

  93. Scandella L (2007) Numerical evaluation of transient ground strains for the seismic response analyses of underground structures. Ph D Thesis, Milan University of Technology, Milan

    Google Scholar 

  94. SCEC www.scec.org. Accessed 1 Jul 2008

  95. Schneiders R (2000) Octree‐Based Hexahedral Mesh Generation. Int J Comput Geom Appl 10(4):383–398

    CrossRef  Google Scholar 

  96. Schwartzkopff T, Munz CD, Toro EF (2002) ADER: A high-order approach for linear hyperbolic systems in 2D. J Sci Comput 17:231–240

    CrossRef  Google Scholar 

  97. Schwartzkopff T, Dumbser M, Munz CD (2004) Fast high order ADER schemes for linear hyperbolic equations. J Comput Phys 197:532–539

    CrossRef  Google Scholar 

  98. Seriani G, Priolo E, Carcione JM, Padovani E (1992) High-order spectral element method for elastic wave modeling: 62nd Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1285–1288

    Google Scholar 

  99. Shepherd JF (2007) Topologic and geometric constraint‐based hexahedral mesh generation. Ph.D. Thesis on Computer Science, School of Computing The Universiy of Utah, Salt Lake City

    Google Scholar 

  100. Sieminski A, Liu Q, Trampert J, Tromp J (2007) Finite‐frequency sensitivity of surface waves to anisotropy based upon adjoint methods. Geophys J Int 168:1153–1174

    CrossRef  Google Scholar 

  101. SPICE www.spice-rtn.org. Accessed 1 Jul 2008

  102. Stupazzini M (2004) A spectral element approach for 3D dynamic soil‐structure interaction problems. Ph D Thesis, Milan University of Technology, Milan

    Google Scholar 

  103. Takeuchi N, Geller RJ (2000) Optimally accurate second order time‐domain finite difference scheme for computing synthetic seismograms in 2-D and 3-D media. Phys Earth Planet Int 119:99–131

    CrossRef  Google Scholar 

  104. Tape C, Liu Q, Tromp J (2007) Finite‐frequency tomography using adjoint methods: Methodology and examples using membrane surface waves. Geophys J Int 168:1105–1129

    CrossRef  Google Scholar 

  105. Tarantola A (1986) A strategy for nonlinear elastic inversion of seismic reflection data. Geophysics 51(10):1893–1903

    CrossRef  Google Scholar 

  106. Tessmer E (2000) Seismic finite‐difference modeling with spatially varying time teps. Geophysics 65:1290–1293

    CrossRef  Google Scholar 

  107. Tessmer K, Kosloff D (1996) 3-D elastic modeling with surface topography by a Chebychev spectral method. Geophysics 59:464–473

    CrossRef  Google Scholar 

  108. Tessmer E, Kessler D, Kosloff K, Behle A (1996) Multi‐domain Chebyshev–Fourier method for the solution of the equations of motion of dynamic elasticity. J Comput Phys 100:355–363

    CrossRef  Google Scholar 

  109. Thomas C, Igel H, Weber M, Scherbaum F (2000) Acoustic simulation of P-wave propagation in a heterogeneous spherical earth: Numerical method and application to precursor energy to PKPdf. Geophys J Int 141:307–320

    CrossRef  Google Scholar 

  110. Thorne M, Lay T, Garnero E, Jahnke G, Igel H (2007) 3-D seismic imaging of the D\({^{\prime\prime}}\) region beneath the Cocos Plate. Geophys J Int 170:635–648

    CrossRef  Google Scholar 

  111. Titarev VA, Toro EF (2002) ADER: Arbitrary high order Godunov approach. J Sci Comput 17:609–618

    CrossRef  Google Scholar 

  112. Toro EF (1999) Riemann solvers and numerical methods for fluid dynamics. Springer, Berlin

    Google Scholar 

  113. Toro EF, Millington AC, Nejad LA (2001) Towards very high order Godunov schemes, in Godunov methods; Theory and applications. Kluwer/Plenum, Oxford, pp 907–940

    Google Scholar 

  114. Toyokuni G, Takenaka H, Wang Y, Kennett BLN (2005) Quasi‐spherical approach for seismic wave modeling in a 2-D slice of a global earth model with lateral heterogeneity. Geophys Res Lett 32:L09305

    CrossRef  Google Scholar 

  115. Van der Hilst RD (2004) Changing views on Earth's deep mantle. Science 306:817–818

    CrossRef  Google Scholar 

  116. Virieux J (1984) SH-wave propagation in heterogeneous media: Velocity‐stress inite‐difference method. Geophysics 49:1933–1957

    CrossRef  Google Scholar 

  117. Virieux J (1986) P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method. Geophysics 51:889–901

    CrossRef  Google Scholar 

  118. Woodhouse JH, Dziewonski AM (1984) Mapping the upper mantle: Three dimensional modelling of earth structure by inversion of seismic waveforms. J Geophys Res 89:5953–5986

    CrossRef  Google Scholar 

  119. Yoshimura C, Bielak J, Hisada Y, Fernández A (2003) Domain reduction method for three‐dimensional earthquake modeling in localized regions, part II: Verification and applications. Bull Seism Soc Am 93:825–841

    Google Scholar 

  120. Zambelli C (2006) Experimental and theoretical analysis of the mechanical behaviour of cohesionless soils under cyclic‐dynamic loading. Ph D Thesis, Milan University of Technology, Milan

    Google Scholar 

  121. Zienckiewicz O, Taylor RL (1989) The finite element method, vol 1. McGraw‐Hill, London

    Google Scholar 

Books and Reviews

  1. Carcione JM, Herman GC, ten Kroode APE (2002) Seismic modelling. Geophysics 67:1304–1325

    CrossRef  Google Scholar 

  2. Mozco P, Kristek J, Halada L (2004) The finite‐difference method for seismologists: An introduction. Comenius University, Bratislava. Available in pdf format at ftp://ftp.nuquake.eu/pub/Papers

  3. Moczo P, Kristek J, Galis M, Pazak P, Balazovjech M (2007) The finite difference and finite‐element modelling of seismic wave propagation and earthquake motion. Acta Physica Slovaca, 57(2)177–406

    Google Scholar 

  4. Wu RS, Maupin V (eds) (2006) Advances in wave propagation in heterogeneous earth. In: Dmowska R (ed) Advances in geophysics, vol 48. Academic/Elsevier, London

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge partial support towards this research from: The European Human Resources and Mobility Program (SPICE‐Network), the German Research Foundation (Emmy Noether‐Programme), the Bavarian Government (KOHNWIHR, graduate college THESIS, BaCaTec), and MunichRe. We would also like to thank J. Tromp supporting MS's visit to CalTech. We also thank two anonymous reviewers for constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag

About this entry

Cite this entry

Igel, H., Käser, M., Stupazzini, M. (2011). Seismic Wave Propagation in Media with Complex Geometries, Simulation of. In: Meyers, R. (eds) Extreme Environmental Events. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7695-6_41

Download citation