Advertisement

Lidar Remote Sensing

  • Juan Carlos Fernandez Diaz
  • William E. Carter
  • Ramesh L. Shrestha
  • Craig L. Glennie

Abstract

Light detection and ranging (LiDAR), also known as laser detection and ranging (LaDAR) or optical radar, is an active remote sensing technique which uses electromagnetic energy in the optical range to detect an object (target), determine the distance between the target and the instrument (range), and deduce physical properties of the object based on interaction of the radiation with the target through phenomena such as scattering, absorption, reflection, and fluorescence. LiDAR has many applications in the scientific, engineering, and military fields. LiDAR sensors have been deployed at fixed terrestrial stations, in mobile surface and subsurface vehicles, lighter-than-air crafts, fixed and rotary wing aircraft, satellites, interplanetary probes, and planetary landers and rovers. This chapter provides a high-level overview of the principles of operation of LiDAR technology and its main applications performed from space-based platforms such as satellite altimetry, atmospheric profiling, and on-orbit imaging and ranging.

Keywords

Active remote sensing Atmospheric CALIOP CALIPSO DIAL Differential absorption LiDAR Doppler LiDAR Fluorescence LiDAR GLAS ICESat International Laser Ranging Service Ladar Laser altimeter Laser detection and ranging Laser remote sensing LiDAR Light detection and ranging LLR Lunar laser ranging OBSS Optical radar Raman LiDAR Satellite laser ranging Scattering LiDAR SLR 

References

  1. W. Abdalati, H.J. Zwally, R. Bindschadler, B. Csatho, S.L. Farrell, H.A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, C. Webb, The ICESat-2 laser altimetry mission. Proc. IEEE 98(5), 735–751 (2010)CrossRefGoogle Scholar
  2. J.B. Abshire, X. Sun, H. Riris, J. M. Sirota, J. F. McGarry, S. Palm, D. Yi, P. Liiva, Geoscience laser altimeter system (GLAS) on the ICESat mission: on-orbit measurement performance. Geophys. Res. Lett. 32, L21S02 (2005)Google Scholar
  3. C.O. Alley, P.L. Bender, R.F. Chang, D.G. Currie, R.H. Dicke, J.E. Faller, W.M. Kaula, G.J.F. MacDonald, J.D. Mulholland, H.H. Plotkin, S.K. Poultney, D.T. Wilkingson, Irwin Winer, Walter Carrion, Tom Johnson, Paul Spadin, Lloyd Robinson, E. Joseph Wampler, Donald Wiebrr, E. Silverberg, C. Steggerda, J. Mullendore, J. Bayner, W. Williams, Brian Warner, Harvey Richardson, and B. Bopp, Laser ranging retroreflector. Section 7, of Apollo 11 Preliminary Science Report. NASA SP 214, 1969Google Scholar
  4. A. Ansmann, U. Wandinger, O. Le Rille, D. Lajas, A.G. Straume, Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations. Appl. Opt. 46, is. 26, 6606–6622 (2007)Google Scholar
  5. M.D. Behn, M.T. Zuber, A comparison of ocean topography derived from the Shuttle Laser Altimeter-01 and TOPEX/POSEIDON. IEEE Trans. Geosci. Rem. Sens. 38(3), 1425–1438 (2000)CrossRefGoogle Scholar
  6. P.L. Bender, D.G. Currie, R.H. Dickey, D.H. Eckhardt, J.E. Faller, W.M. Kaula, J.D. Mulholland, H.H. Plotkin, S.K. Poultney, E.C. Silverberg, D.T. Wilkinson, J.G. Williams, C.O. Alley, The lunar ranging experiment. Science 182(4109), 229–238 (1973). New SeriesCrossRefGoogle Scholar
  7. J.L. Bufton, Laser altimetry measurements from aircraft and spacecrat. Proc. IEEE 77(3), 463–477 (1989)CrossRefGoogle Scholar
  8. C.C. Carabajal, D.J. Hardin, S. B. Luthcke, W. Fong, S. C. Rowton, J.J. Frawley, Processing of shuttle laser altimeter range and return pulse data in support of SLA-02, in Proceedings of the ISPRS Workshop Mapping Surface Structure and Topography by Airborne and Spaceborne Lasers, Portland, 1999Google Scholar
  9. W.E. Carter, The lunar laser ranging pointing problem. Unpublished doctoral dissertation, University of Arizona, Tucson, 1973Google Scholar
  10. W.E. Carter, R. L. Shrestha, K.C. Slatton, Geodetic laser scanning. Phys Today. 60(12) (2007)Google Scholar
  11. J.F. Cavanaugh, J.C. Smith, X. Sun, A.E. Bartels, L. Ramos-Izquierdo, D.J. Krebs, J.F. McGarry, R. Trunzo, A.M. Novo-Gradac, J.L. Britt, J. Karsh, R.B. Katz, A.T. Lukermire, R. Szymkiewicz, D.L. Berry, J.P. Swinski, G.A. Neumann, M.T. Zuber, D. Smith, The Mercury laser altimeter instrument for the MESSENGER mission. Space Sci Rev 131(1–4), 451–479 (2007)CrossRefGoogle Scholar
  12. M.L. Chanin, A. Hauchecorne, C. Malique, D. Nedeljkovic, J.E. Blamont, M. Desbois, G. Tulinov and V. Melnikov, “Premiers résultats du lidar Alissa embarqué à bord de la station Mir,” Comptes Rendus de l’Académie des Sciences – Series IIA – Earth and Planetary Science. 328(6), 359–366 (1999)Google Scholar
  13. T.D. Colea, A.F. Chenga, M. Zuberb and D. Smith, “The Laser Rangefinder on the near Earth Asteroid Rendezvous spacecraft,” Acta Astronautica, in Second IAA International Conference on Low-Cost Planetary Missions, Laurel, vol. 39, Issue no 1–4, pp. 303–313, July-August 1996Google Scholar
  14. T.K. Cossio, K.C. Slatton, W.E. Carter, K.Y. Shrestha, D. Harding, Predicting small target detection performance of Low-SNR airborne LiDAR. IEEE J. Select. Topics Appl. Earth Observ. Rem. Sens. 3(4), 672–688 (2010)CrossRefGoogle Scholar
  15. A. Deslauriers, I. Showalter, A. Montpool, R. Taylor, I. Christie, “Shuttle TPS inspection using triangulation scanning technology,” Spaceborne sensors II. Proc. SPIE 5798, 26–33 (2005)CrossRefGoogle Scholar
  16. J.O. Dickey, P.L. Bender, J.E. Faller, X.X. Newhall, R.L. Ricklefs, J.G. Ries, P.J. Shelus, C. Veillet, A.L. Whipple, J.R. Wiant, J.G. Williams, C.F. Yoder, Lunar laser ranging: a continuing legacy of the apollo program. Science 265(5171), 482–490 (1994). New SeriesCrossRefGoogle Scholar
  17. A. Donnellan, P. Rosen, J. Ranson, H. Zebker, Deformation, ecosystem structure, and dynamics of ice (DESDynI), in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS, Honolulu, 2008Google Scholar
  18. E. Dupuis, J.C. Piedboeuf and E. Martin, Canadian activities in intelligent robotic systems: an overview, in Proceedings of International Symposium on Artificial Intelligence, Robotics and Automation in Space, Hollywood, CA, USA, Feb 2008Google Scholar
  19. J.J. Degnan, 30 Years of SLR (invited paper), Proc. of the 9th International Workshop on Laser Ranging Instrumentation, Australian Government Publishing Service, Canberra, p. 8, 1994, http://ilrs.gsfc.nasa.gov/docs/ThirtyYearsOfSatelliteLaserRanging.pdf
  20. Y. Durand, A. Hélière, P. Bensi, J.-L. Bézy, and R. Meynart, Lidars in ESA’s earth explorer missions, in 14th Coherent Laser Radar Conference, Snowmass, 2007Google Scholar
  21. C. English, S. Zhu, C. Smith, S. Ruel, I. Christie, Tridar: a hybrid sensor for exploiting the complimentary nature of triangulation and LIDAR technologies, in The 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space. ed. by B. Battrick. ESA SP-603. European Space Agency, München, 2005Google Scholar
  22. J.C. Fernandez-Diaz, Scientific applications of the mobile terrestrial laser scanner (M-TLS) system, M.S. thesis, Department of Civil Engineering, University of Florida, Gainesville, Florida, 2007, http://purl.fcla.edu/fcla/etd/UFE0021101. Accessed Feb 2011
  23. G. Fiocco, L.D. Smullin, Detection of scattering layers in the upper atmosphere (60–140 km) by optical radar. Nature 199, 1275–1276 (1963)CrossRefGoogle Scholar
  24. J. Garvin, J. Bufton, J. Blair, D. Harding, S. Luthcke, J. Frawley, D. Rowlands, Observations of the Earth’s topography from the shuttle laser altimeter (SLA): laser-pulse echo-recovery measurements of terrestrial surfaces. Phys. Chem. Earth 23(9–10), 1053–1068 (1998)CrossRefGoogle Scholar
  25. Hamamatsu Corporation, Photon counting using photomultiplier tubes, 2005, http://sales.hamamatsu.com/assets/applications/ETD/PhotonCounting_TPHO9001E04.pdf
  26. D.J. Harding, D.B. Gesch, C.C. Carabajal, and S.B. Luthcke, Application of the shuttle laser altimeter in an accuracy assessment of GTOP30, a global 1-kilometer digital elevation model, in Proceedings of the ISPRS Workshop Mapping Surface Structure and Topography by Airborne and Spaceborne Lasers, Portland, Nov 1999Google Scholar
  27. D.W. Harris, J.H. Berbert, NASA/MOTS optical observations of the ANNA 1B satellite, NASA Technical Note D-3174, Jan 1966Google Scholar
  28. W.A. Heiskanen, H. Moritz, Physical Geodesy (Freeman, San Francisco, 1967)Google Scholar
  29. E.O. Hulburt, Observations of a searchlight beam to an altitude of 28 kilometers. J. Opt. Soc. Am. 27, 377–382 (1937)CrossRefGoogle Scholar
  30. A. Javan, W.R. Bennett, D.R. Herrott, Population inversion and continuous optical maser oscillation in a gas discharge containing a He–Ne mixture. Phys. Rev. Lett. 6, 106–110 (1961)CrossRefGoogle Scholar
  31. E.A. Johnson, R.C. Meyer, R.E. Hopkins, W.H. Mock, The measurement of light scattered by the upper atmosphere from a search-light beam. J. Opt. Soc. Am. 29, 512–517 (1939)CrossRefGoogle Scholar
  32. JPL, Rover camera instrument description, 1997, http://starbase.jpl.nasa.gov/mpfr-m-rvreng-2_3-edr_rdr-v1.0/mprv_0001/document/rcinst.htm. Accessed Feb 2011
  33. K. Kaufmann, Choosing your Detector, OE Magazine, March 2005Google Scholar
  34. W.M. Kaula, G. Schubert, R.E. Lingenfelter, W.L. Sjogren, W.R. Wollenhaupt, Apollo laser altimetry and inferences as to lunar structure, in Lunar Science Conference, 5th, Houston, Tex., 18 Mar 1974, Proceedings, vol. 3, (A75-39540 19-91) Pergamon Press, New York, pp. 3049–3058, 1974Google Scholar
  35. L. Le Hors, Y. Toulemont, A. Hélière, “Design and Development of the Backscatter Lidar Atlid for Earthcare”, proceedings of the International Conference on Space Optics (Toulouse, France, 2008)Google Scholar
  36. G.G. Matvienko, V.E. Zuev, V.S. Shamanaev, G.P. Kokhanenko, A.M. Sutormin, A.I. Buranskii, S.E. Belousov, A.A. Tikhomirov, Lidar BALKAN-2 for the space platform ALMAZ-1B, Lidar Techniques for Remote Sensing, in Proceedings of SPIE, vol. 2310, 1994, http://spie.org/x648.html?product_id=195859
  37. F.J. McClung, R.W. Hellwarth, Giant optical pulsations from Ruby. J. Appl. Phys. 33(3), 828–829 (1962)CrossRefGoogle Scholar
  38. J. McGarry, T. Zagwodzki, A brief history of satellite laser ranging: 1964 – present. Published by the Crustal Dynamics Data Information System (CDDIS), NASA Goddard Space Flight Center, Greenbelt, Maryland (2005) http://cddis.nasa.gov/slr2000/docs/gsfcslr_jm0504.pdf. Accessed Feb 2011
  39. J.K. Miller, A.S. Konopliv, P.G. Antreasian, J.J. Bordi, S. Chesley, C.E. Helfrich, W.M. Owen, T.C. Wang, B.G. Williams, D.K. Yeomans, D.J. Scheeres, Determiantion of shape, gravity and rotational state of Asteroid 433 Eros. Icarus 155, 3–17 (2002)CrossRefGoogle Scholar
  40. NASA, The space shuttle’s return to flight, mission STS-114 press kit (2005)Google Scholar
  41. National Research Council, “Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond,” Committee on Earth Science and Applications from Space: A Community Assessment and Strategy for the Future (The National Academies Press, Washington, DC, 2007). ISBN 0-309-10387-8Google Scholar
  42. M. Nimelman, J. Tripp, A. Allen, D.M. Hiemstra, S.A. McDonald, Spaceborne scanning lidar system (SSLS) upgrade path. Proc. SPIE 6201, 62011V-1–62U11V-10 (2006)Google Scholar
  43. J.C. Piedboeuf, E. Martin, M. Doyon, On-orbit servicing in Canada: advanced developments and demonstrations, in Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation ASTRA, Noordwick, 2004Google Scholar
  44. L. Ramos-Izquierdo, V.S. Scott III, J. Connelly, S. Schmidt, W. Mamakos, J. Guzek, C. Peters, P. Liiva, M. Rodriguez, J. Cavanaugh, H. Riris, Optical system design and integration of the Lunar orbiter laser altimeter. Appl. Opt. 48, 3035–3049 (2009)CrossRefGoogle Scholar
  45. F.I. Robertson, W.M. Kaula, Apollo 15 laser altimeter, Part D, Section 25, Apollo 15 Preliminary Science Report. NASA SP-289, 1972Google Scholar
  46. B.E. Schutz, H.J. Zwally, C.A. Shuman, D. Hancock, J.P. DiMarzio, Overview of the ICESat mission. Geophys. Res. Lett. 32, L21S01 (2005)CrossRefGoogle Scholar
  47. J. Shan, C.K. Toth (eds.), Topographic Laser Ranging and Scanning: Principles and Processing (CRC Press, Boca Raton, 2009)Google Scholar
  48. H. Simons, Secret mapping by satellite, New Sci. 21(381) (1964)Google Scholar
  49. D.E. Smith, M.T. Zuber, G.A. Neumann, F.G. Lemoine, Topography of the Moon from the Clementine lidar. J Geophys. Res. 102(E1), 1591–1611 (1997)CrossRefGoogle Scholar
  50. D.E. Smith, M.T. Zuber, H.V. Frey, J.B. Garvin, J.W. Head, D.O. Muhleman, G.H. Pettengill, R.J. Phillips, S.C. Solomon, H.J. Zwally, W.B. Banerdt, T.C. Duxbury, M.P. Golombek, F.G. Lemoine, G.A. Neumann, D.D. Rowlands, O. Aharonson, P.G. Ford, A.B. Ivanov, C.L. Johnson, P.J. McGovern, J.B. Abshire, R.S. Afzal, X. Sun, Mars orbiter laser altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res 106(E10), 23689–23722 (2001)CrossRefGoogle Scholar
  51. D.E. Smith, M.T. Zuber, G.A. Neumann, F.G. Lemoine, E. Mazarico, M.H. Torrence, J.F. McGarry, D.D. Rowlands, J.W. Head III, T.H. Duxbury, O. Aharonson, P.G. Lucey, M.S. Robinson, O.S. Bamouin, J.F. Cavanaugh, X. Sun, P. Liiva, D. Mao, K.C. Smith, A.E. Bartels, Initial observations from the Lunar Orbiter Laser Altimeter (LOLA). Geophys. Res. Lett. 37, L18204 (2010)CrossRefGoogle Scholar
  52. C.L. Smithpeter, R.O. Nellums, S.M. Lebien, G. Studor, Miniature high-resolution laser radar operating at video rates. Proc. SPIE 4035, 279–286 (2000)CrossRefGoogle Scholar
  53. L.D. Smullin, G. Fiocco, Optical echoes from the Moon. Nature 194, 1267 (1962)CrossRefGoogle Scholar
  54. STS-105 Shuttle press kit, 2001, http://www.shuttlepresskit.com/sts-105/index.htm
  55. G. Suna, K.J. Ranson, V.I. Kharuk, K. Kovacs, Validation of surface height from shuttle radar topography mission using shuttle laser altimeter. Rem. Sens. Environ. 88(4), 401–411 (2003)CrossRefGoogle Scholar
  56. E.H. Synge, Phil. Mag. 9, 1014–20 (1930)zbMATHGoogle Scholar
  57. N. Taylor, LASER: The Inventor, the Nobel Laureate, and the Thirty-Year Patent War (Simon & Schuster, New York, 2000)Google Scholar
  58. The International Laser Ranging Service, http://ilrs.gsfc.nasa.gov/. Accessed February 2011
  59. N. Thomasa, T. Spohnb, J.-P. Barriotc, W. Benza, G. Beutlerd, U. Christensene, V. Dehantf, C. Fallnichg, D. Giardinih, O. Groussini, K. Gundersona, E. Hauberb, M. Hilchenbache, L. Iessj, P. Lamyk, L.-M. Laral, P. Lognonnem, J.J. Lopez-Morenol, H. Michaelisb, J. Oberstb, D. Resendesn, J.-L. Reynaudk, R. Rodrigol, S. Sasakio, K. Seiferlina, M. Wieczorekm, J. Whitbya, The BepiColombo laser altimeter (BELA): concept and baseline design. Planet. Space Sci. 55(10), 1398–1413 (2007)CrossRefGoogle Scholar
  60. M.A. Tuve, E.A. Johnson, O.R. Wulf, A new experimental method for study of the upper atmosphere. J. Terrest. Magnet. 40, 452–454 (1935)CrossRefGoogle Scholar
  61. J.R. Vetter, “Fifty years of orbit determination, development of modern astrodynamic methods, Johns Hopkins APL Tech. Dig. 27, 3 239–252 (2007)Google Scholar
  62. U. Wandinger, Introduction to Lidar, in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, ed. by C. Weitkamp (Springer, New York, 2005), pp. 1–18Google Scholar
  63. M.J. Weber (ed.), Handbook of LASERS (CRC Press, Baco Raton, 2001). ISBN 978-1-4200-5017-2Google Scholar
  64. C. Weitkamp (ed.), Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (New York, Springer, 2005)Google Scholar
  65. C. Werner, G. Kokhanenko, G. Matvienko, V. Shamanaev, Y. Grachjov, I. Znamenskii, U.G. Oppel, Spaceborne laser rangefinder “LORA” used as a cloud lidar. Opt. Rev. 2(3), 221–224 (1995)CrossRefGoogle Scholar
  66. C. Werner, Spaceborne lidar mission, past and future, in Proceedings Conference on Lasers and Electro-optics Europe, CLEO/Europe, Hamburg, pp. 212, Sep 1996Google Scholar
  67. J. Whiteway, J.M. Daly, A. Carswell, T. Duck, C. Dickinson, L. Komguem, C. Cook, Lidar on the Phoenix mission to Mars. J. Geophys. Res. 113, E00A08, 2008Google Scholar
  68. J. Whiteway, L. Komguem, C. Dickinson, Observations of Mars atmospheric dust and clouds with the Lidar instrument on the phoenix mission, in Abstract on the Forth International Workshop on the Mars Atmosphere: Modeling and Observations, Paris, Feb 2011Google Scholar
  69. D.M. Winker, R.H. Couch, M.P. McCormick, An overview of LITE: NASA’s Lidar in-space technology experiment. Proc. IEEE 84(2), 164–180 (1996)CrossRefGoogle Scholar
  70. D.M. Winker, W.H. Hunt, C.A. Hostetler, Status and performance of the CALIOP lidar, in Laser Radar Techniques for Atmospheric Sensing (Proceedings of the SPIE), vol. 5575, ed. by U.N. Singh, pp. 8–15, Maspalomas, Gran Canaria, Spain, 2004Google Scholar
  71. W.R. Wollenhaupt, W.L. Sjogren, Apollo 16 laser altimeter, Chapter 30, Part A, Apollo 16 Preliminary Science Report SP-315, 1972Google Scholar
  72. W.R. Wollenhaupt, W.L. Sjogren, R.E. Lingenfelter, G. Schubert, and W.M. Kaula, Apollo 17 laser altimeter, Chapter 33, Part E, Apollo 17 Preliminary Science Report SP-330, 1973Google Scholar
  73. A.W. Yua, M.A. Stephen, S.X. Li, G.B. Shawa, A. Seasa, E. Dowdyea, E. Troupakib, P. Liivab, D. Pouliosc, K. Mascetti, Space laser transmitter development for ICESat-2 mission. Proc. SPIE 7578, 757–809 (2010)Google Scholar
  74. M.T. Zuber, D.E. Smith, A.F. Cheng, J.B. Garvin, O. Aharonson, T.D. Cole, P.J. Dunn, Y. Guo, F.G. Lemoine, G.A. Neumann, D.D. Rowlands, M.H. Torrance, The shape of 433 Eros from the NEAR-shoemaker laser rangefinder. Science 289, 2097 (2000)CrossRefGoogle Scholar
  75. M.T. Zuber, D.E. Smith, S.C. Solomon, R.J. Phillips, S.J. Peale, J.W. Head III, S.A. Hauck II, R.L. McNutt Jr., J. Oberst, G.A. Neumann, F.G. Lemoine, X. Sun, O. Barnouin-Jha, J.K. Harmon, Laser altimeter observations from MESSENGER’s first Mercury Flyby. Science 321, 77 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Juan Carlos Fernandez Diaz
    • 1
    • 2
  • William E. Carter
    • 1
    • 3
  • Ramesh L. Shrestha
    • 1
    • 3
  • Craig L. Glennie
    • 1
    • 3
  1. 1.NSF National Center for Airborne Laser Mapping (NCALM)/Department of Civil and Environmental EngineeringUniversity of HoustonHoustonUSA
  2. 2.University of HoustonHoustonUSA
  3. 3.NSF National Center for Airborne Laser Mapping (NCALM)/Department of Civil and Environmental EngineeringUniversity of HoustonHoustonUSA

Personalised recommendations