Encyclopedia of Applied Electrochemistry

2014 Edition
| Editors: Gerhard Kreysa, Ken-ichiro Ota, Robert F. Savinell

Paired Electrosynthesis

Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-6996-5_370


Organic electrochemistry can be a very powerful synthetic tool [1, 2, 3]. Anodic oxidation as well as cathodic reduction processes are utilized [4]. If one wants to carry out a synthesis based on an anodic oxidation, the cathodic process is normally not of synthetic interest and vice versa. Nevertheless in some cases the counter-electrode process can be used also. An example is the cathodic evolution of hydrogen in protic solvents like water or methanol, while the anodic process renders the desired product. The evolving hydrogen can be utilized as fuel material. In these cases the counter-electrode reaction is of economical and not of synthetic use. But electrochemists dream of a paired electrosynthesis using cathodic and anodic process for synthesis to achieve the ultimate goal: a 200 % electrosynthesis.

There are several ways possible to perform such a paired electrosynthesis, e.g., in a parallel, convergent, divergent, or linear assembly [5, 6] (Fig. 1).
This is a preview of subscription content, log in to check access.


  1. 1.
    Lund H, Hammerich O (2001) Organic electrochemistry. Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    Schäfer HJ, Bard AJ, Stratmann M (2004) Organic electrochemistry. In: Encyclopedia of electrochemistry, vol 8. Wiley-VCH, WeinheimGoogle Scholar
  3. 3.
    Eberson L, Nyberg K (1976) Synthetic uses of anodic substitution reactions. Tetrahedron 32:2185–2206Google Scholar
  4. 4.
    Schäfer HJ (1981) Anodic and cathodic CC-bond formation. Angew Chem Int Ed 20:911–934Google Scholar
  5. 5.
    Paddon CA, Atobe M, Fuchigami T, He P, Watts P, Haswell SJ, Pritchard GJ, Bull SD, Marken F (2006) Towards paired and coupled electrode reactions for clean organic microreactor electrosyntheses. J Appl Electrochem 36:617–634Google Scholar
  6. 6.
    Frontana-Uribe BA, Little RD, Ibanez JG, Palma A, Vasquez-Medrano R (2010) Organic electrosynthesis: a promising green methodology in organic chemistry. Green Chem 12:2099–2119Google Scholar
  7. 7.
    Hannebaum H, Pütter H (1999) Elektrosynthesen Strom doppelt genutzt: Erste technische “Paired Electrosynthesis”. Chemie in unserer Zeit 33:373–374Google Scholar
  8. 8.
    Hannebaum H, Pütter H (BASF) DE19618854Google Scholar
  9. 9.
    Wendt H, Bitterlich S (1992) Anodic synthesis of benzaldehydes – 1. Voltammetry of the anodic oxidation of toluene in non-aqueous solutions. Electrochim acta 37:1951–1958Google Scholar
  10. 10.
    Wendt H, Bitterlich S, Lodowicks E, Liu Z (1992) Anodic synthesis of benzaldehydes – 2. Optimization of the direct anodic oxidation of toluenes in methanol and ethanol. Electrochim Acta 37:1959–1969Google Scholar
  11. 11.
    Degner D (BASF) DE2848397. Degner D, Barl M, Siegel H (BASF) DE2848397Google Scholar
  12. 12.
    Beck F, Guthke H (1969) Entwicklung neuer Zellen für electro-organische Synthesen. Chem-Ing-Tech 41:943–950Google Scholar
  13. 13.
    Scott K (1991) A preliminary investigation of the simultaneous anodic and cathodic production of glyoxylic acid. Electrochim Acta 36:1447–1452Google Scholar
  14. 14.
    Jalbout AF, Zhang S (2002) New paired electrosynthesis route for glyoxalic acid. Acta Chim Slov 49:917–923Google Scholar
  15. 15.
    Mattioda G, Christidis Y (2000) Glyoxylic acid. In: Ullmann’s encyclopedia of industrial chemistry, vol 17. Wiley-VCH, Weinheim, pp 89–92Google Scholar
  16. 16.
    Pierre G, El Kordi M, Cauquis G, Mattioda G, Christidis Y (1985) Electrochemical synthesis of glyoxylic acid from glyoxal. Part 1. Role of the electrolyte, temperature and electrode material. J Electroanal Chem 186:167–177Google Scholar
  17. 17.
    Tafel J, Friedrichs G (1904) Elektrolytische Reduction von Carbonsäuren und Carbonsäureestern in schwefelsaurer Lösung. Chem Ber 37:3187–3191Google Scholar
  18. 18.
    Goodridge F, Lister K, Plimley RE, Scott K (1980) Scale-up studies of the electrolytic recuction of oxalic to glyoxalic acid. J Appl Electrochem 10:55–60Google Scholar
  19. 19.
    Picket DJ, Yap KS (1974) A study of the production of glyoxylic acid by the electrochemical reduction of oxalic acid solution. J Appl Electrochem 4:17–23Google Scholar
  20. 20.
    Scharbert B, Dapperheld S, Babusiaux P (Hoechst) DE4205423Google Scholar
  21. 21.
    Park K, Pintauro PN, Baizer MM, Nobe K (1985) Flow rate studies of the paired electro-oxidation and electroreduction of glucose. J Electrochem Soc 132:1850–1855Google Scholar
  22. 22.
    Ibert M, Fuertès P, Merbouh N, Fiol-Petit C, Feasson C, Marsais F (2010) Improved preparative electrochemical oxidation of D-glucose to D-glucaric acid. Electrochim Acta 55:3589–3594Google Scholar
  23. 23.
    Schnatbaum K, Schäfer HJ (1999) Electroorganic Synthesis 66: Selective anodic oxidation of carbohydrates mediated by TEMPO. Synthesis 864–872Google Scholar
  24. 24.
    Li W, Nonaka T, Chou T-C (1999) Paired electrosynthesis of organic compounds. Electrochemistry 67:4–10Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.BASF SELudwigshafenGermany