Skip to main content

Cofactor Regeneration, Electrochemical

Introduction

Enzymes are highly specific and selective, especially for enantio- or regio-selective introduction of functional groups. Therefore, isolated enzymes such as alcohol dehydrogenases or P450 monooxygenases become more and more important for industrial production or sensor application. These enzymes can be used for the production of building blocks for synthesis of fine chemicals and important pharmaceuticals. Many of the applicable enzymes are known to be cofactor dependent. Cofactors are low-molecular compounds, which are responsible for the transfer of hydrogen, electrons, or functional groups in enzyme-catalyzed reactions [1]. Important cofactors are adenosine-5′-triphosphate (ATP), flavin adenine dinucleotide (FAD), coenzyme A (CoA), pyrroloquinoline quinone (PQQ), and nicotinamide cofactors (nicotinamide adenine dinucleotide phosphate (NADPH) and nicotinamide adenine dinucleotide (NADH)) (see Fig. 1).

Cofactor Regeneration, Electrochemical, Fig. 1
figure 346

Structure and redox...

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4419-6996-5_255
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   1,199.99
Price excludes VAT (USA)
  • ISBN: 978-1-4419-6996-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   1,599.99
Price excludes VAT (USA)
Cofactor Regeneration, Electrochemical, Fig. 1
Cofactor Regeneration, Electrochemical, Fig. 2
Cofactor Regeneration, Electrochemical, Fig. 3
Cofactor Regeneration, Electrochemical, Fig. 4
Cofactor Regeneration, Electrochemical, Fig. 5
Cofactor Regeneration, Electrochemical, Fig. 6

References

  1. Weckbecker A, Gröger H, Hummel W (2010) Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. In: Wittmann C, Krull R (eds) Advances in biochemical engineering/biotechnology, vol 120. Springer, Berlin/Heidelberg, pp 195–242. doi:10.1007/10_2009_55

    Google Scholar 

  2. Wichmann R, Vasic-Racki D (2005) Cofactor regeneration at the lab scale. In: Kragl U (ed) Advances in biochemical engineering/biotechnology, vol 92. Springer, Berlin/Heidelberg, pp 225–260. doi:10.1007/b98911

    Google Scholar 

  3. Kohlmann C, Märkle W, Lütz S (2008) Electroenzymatic synthesis. J Mol Catal B Enzym 51(3–4):57–72. doi:10.1016/j.molcatb.2007.10.001

    CAS  Google Scholar 

  4. Hollmann F, Schmid A (2004) Electrochemical regeneration of oxidoreductases for cell-free biocatalytic redox reactions. Biocatal Biotrans 22(2):63–88. doi:10.1080/10242420410001692778

    CAS  Google Scholar 

  5. Blankespoor RL, Miller LL (1984) Electrochemical oxidation of NADH: kinetic control by product inhibition and surface coating. J Electroanal Chem Interfacial Electrochem 171(1–2):231–241. doi:10.1016/0022-0728(84)80116-3

    CAS  Google Scholar 

  6. Schröder I, Steckhan E, Liese A (2003) In situ NAD+ regeneration using 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) as an electron transfer mediator. J Electroanal Chem 541:109–115. doi:10.1016/s0022-0728(02)01420-1

    Google Scholar 

  7. Tse DC-S, Kuwana T (1978) Electrocatalysis of dihydronicotinamide adenosine diphosphate with quinones and modified quinone electrodes. Anal Chem 50(9):1315–1318

    CAS  Google Scholar 

  8. Vasilescu A, Noguer T, Andreescu S, Calas-Blanchard C, Bala C, Marty J-L (2003) Strategies for developing NADH detectors based on Meldola blue and screen-printed electrodes: a comparative study. Talanta 59(4):751–765. doi:10.1016/s0039-9140(02)00614-8

    CAS  Google Scholar 

  9. Cai CX, Xue KH (1997) Electrocatalysis of NADH oxidation with electropolymerized films of nile blue A. Anal Chim Acta 343(1–2):69–77. doi:10.1016/s0003-2670(96)00592-2

    CAS  Google Scholar 

  10. Zhou DM, Fang HQ, Chen H-Y, Ju HX, Wang Y (1996) The electrochemical polymerization of methylene green and its electrocatalysis for the oxidation of NADH. Anal Chim Acta 329(1–2):41–48. doi:10.1016/0003-2670(96)00117-1

    CAS  Google Scholar 

  11. Itoh S, Fukushima H, Komatsu M, Ohshiro Y (1992) Heterocyclic o-quinones. Mediator for electrochemical oxidation of NADH. Chem Lett 21(8):1583–1586

    Google Scholar 

  12. Kashiwagi Y, Osa T (1993) Electrocatalytic oxidation of NADH on thin poly(acrylic acid) film coated graphite felt electrode coimmobilizing ferrocene and diaphorase. Chem Lett 22(4):677–680

    Google Scholar 

  13. Burnett JN, Underwood AL (1965) Electrochemical reduction of diphosphopyridine nucleotide*. Biochemistry 4(10):2060–2064. doi:10.1021/bi00886a021

    CAS  Google Scholar 

  14. Bresnahan WT, Elving PJ (1981) The role of adsorption in the initial one-electron electrochemical reduction of nicotinamide adenine dinucleotide (NAD+). J Am Chem Soc 103(9):2379–2386. doi:10.1021/ja00399a039

    CAS  Google Scholar 

  15. Hans J (1981) 420 – A study of the products formed in the electrochemical reduction of nicotinamide-adenine-dinucleotide. Bioelectrochem Bioenerg 8(3):355–370. doi:10.1016/0302-4598(81)80018-9

    Google Scholar 

  16. Kim YH, Yoo YJ (2009) Regeneration of the nicotinamide cofactor using a mediator-free electrochemical method with a tin oxide electrode. Enzyme Microb Technol 44(3):129–134. doi:10.1016/j.enzmictec.2008.10.019

    CAS  Google Scholar 

  17. Baik SH, Kang C, Jeon IC, Yun SE (1999) Direct electrochemical regeneration of NADH from NAD+ using cholesterol-modified gold amalgam electrod. Biotechnol Tech 13

    Google Scholar 

  18. Steckhan E (1994) Electroenzymatic synthesis. In: Steckhan E (ed) Topics in current chemistry, vol 170. Springer, Berlin/Heidelberg, pp 83–111

    Google Scholar 

  19. Délécouls-Servat K, Bergel A, Basséguy R (2004) Membrane electrochemical reactors (MER) for NADH regeneration in HLADH-catalysed synthesis: comparison of effectiveness. Bioprocess Biosyst Eng 26(4):205–215. doi:10.1007/s00449-004-0356-2

    Google Scholar 

  20. Durliat H, Barrau MB, Comtat M (1988) FAD used as a mediator in the electron transfer between platinum and several biomolecules. Bioelectrochem Bioenerg 19(3):413–423. doi:10.1016/0302-4598(88)80022-9

    CAS  Google Scholar 

  21. Karyakin AA, Bobrova OA, Karyakina EE (1995) Electroreduction of NAD+ to enzymatically active NADH at poly(neutral red) modified electrodes. J Electroanal Chem 399(1):179–184

    Google Scholar 

  22. Arechederra MN, Addo PK, Minteer SD (2010) Poly(neutral red) as a NAD+ reduction catalyst and a NADH oxidation catalyst: towards the development of a rechargeable biobattery. Electrochim Acta 56(3):1585–1590

    Google Scholar 

  23. Gorton L, Domínguez E (2002) Electrocatalytic oxidation of NAD(P)H at mediator-modified electrodes. Rev Mol Biotechnol 82(4):371–392. doi:10.1016/s1389-0352(01)00053-8

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svenja Kochius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Holtmann, D., Kochius, S. (2014). Cofactor Regeneration, Electrochemical. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_255

Download citation