Encyclopedia of Cryptography and Security

2011 Edition
| Editors: Henk C. A. van Tilborg, Sushil Jajodia

Decoding Algorithms

  • Christiane Peters
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-5906-5_382

Synonyms

Related Concepts

Definition

A decoding algorithm for a linear code C over \({\mathbb{F}}_{q}\)

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Barg A (1994) Some new NP complete coding problems. Problemy Peredachi Informatsii 30(3):23–28, in RussianMathSciNetGoogle Scholar
  2. 2.
    Barg A (1998) Complexity issues in coding theory, chapter 7. In: Huffman WC, Pless V, Brualdi RA (eds) Handbook of coding theory. Elsevier/North Holland, Amsterdam, pp 649–754Google Scholar
  3. 3.
    Berlekamp ER, McEliece RJ, van Tilborg HCA (1978) On the inherent intractability of certain coding problems. IEEE Trans Inf Theory 24:384–386zbMATHGoogle Scholar
  4. 4.
    Bernstein DJ (2008) List decoding for binary Goppa codes. http://cr.yp.to/papers.html#goppalist
  5. 5.
    Bernstein DJ, Lange T, Peters C (2008) Attacking and defending the McEliece cryptosystem. In: Buchmann J, Ding J (eds) PQCrypto 2008. Lecture notes in computer science, vol 5299. Springer, Berlin, pp 31–46Google Scholar
  6. 6.
    Dumer I (1989) Two decoding algorithms for linear codes. Problemy Peredachi Informatsii 25(1):24–32MathSciNetGoogle Scholar
  7. 7.
    Dumer I (1991) On minimum distance decoding of linear codes. In: Kabatianskii GA (ed) Proceedings 5th Joint Soviet-Swedish International Workshop Information Theory, Moscow, pp 50–52Google Scholar
  8. 8.
    Goppa VD (1970) A new class of linear error correcting codes. Problemy Peredachi Informatsii 6(3):24–30zbMATHMathSciNetGoogle Scholar
  9. 9.
    Guruswami V, Sudan M (1999) Improved decoding of Reed-Solomon and algebraic-geometry codes. IEEE Trans Inf Theory 45:1757–1767zbMATHMathSciNetGoogle Scholar
  10. 10.
    Huffman WC, Pless V (2003) Fundamentals of error-correcting codes. Cambridge University Press, New YorkzbMATHGoogle Scholar
  11. 11.
    Huffman WC, Pless V, Brualdi RA (1998) Handbook of coding theory. Elsevier/North Holland, AmsterdamzbMATHGoogle Scholar
  12. 12.
    Krouk EA (1989) Decoding complexity bound for linear block codes. Problemy Peredachi Informatsii 25(3):103–107MathSciNetGoogle Scholar
  13. 13.
    Lee PJ, Brickell EF (1988) An observation on the security of McEliece’s public-key cryptosystem. In: Günther CG (ed) EUROCRYPT ’88. Lecture notes in computer science, vol 330. Springer, Berlin, pp 275–280Google Scholar
  14. 14.
    Jeffrey JS (1988) A probabilistic algorithm for computing minimum weights of large error-correcting codes. IEEE Trans Inf Theory 34(5):1354–1359Google Scholar
  15. 15.
    MacWilliams FJ, Sloane NJA (1977) The theory of error-correcting codes. Elsevier/North Holland, AmsterdamzbMATHGoogle Scholar
  16. 16.
    Patterson NJ (1975) The algebraic decoding of Goppa codes. IEEE Trans Inf Theory IT-21:203–207Google Scholar
  17. 17.
    Peters C (2010) Information-set decoding for linear codes over Fq. In: Sendrier N (ed) PQCrypto 2010: Lecture notes in computer science, vol 6061. Springer, Berlin, pp 81–94Google Scholar
  18. 18.
    Prange E (1962) The use of information sets in decoding cyclic codes. IRE Trans Inf Theory 8(5):5–9MathSciNetGoogle Scholar
  19. 19.
    Stern J (1989) A method for finding codewords of small weight. In: Cohen GD, Wolfmann J (eds) Coding theory and applications. Lecture notes in computer science, vol 388. Springer, Berlin, pp 106–113Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Christiane Peters
    • 1
  1. 1.Department of Mathematics and Computer ScienceTechnische Universiteit EindhovenEindhovenThe Netherlands