Encyclopedia of Operations Research and Management Science

2013 Edition
| Editors: Saul I. Gass, Michael C. Fu

Simulation Metamodeling

  • Linda Weiser FriedmanEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-1153-7_957


Simulation experiments may be conducted for many reasons, for example, optimization. Additionally, and not incidentally, an objective of any system simulation must be to achieve a certain measure of understanding of the nature of the relationships between the input variables and the output variables of the real system under study. The simulation model, although simpler than the real-world system, is still a very complex way of relating input to output. Sometimes, a simpler model may be used as an auxiliary to the simulation model in order to better understand the more complex model and to provide a framework for testing hypotheses about it. This auxiliary model is frequently referred to as a metamodel (Santos 2009; Cheng 2008; Santos and Santos 2007; Friedman 1996).

One simple metamodel favored by some simulation researchers, e.g., Kleijnen ( 1979), Kleijnen and Sargent ( 2000), Santos and Santos ( 2009), is the general linear model. For a univariate response experiment,...
This is a preview of subscription content, log in to check access.


  1. Barton, R. R. (1994). Metamodeling: A state of the art review. Proceedings of the Winter Simulation Conference, 237–244.Google Scholar
  2. Cheng, R. (2008). Selecting the best linear simulation metamodel. In S. J. Mason, R. R. Hill, L. Monch, O. Rose, T. Jefferson, & J. W. Fowler (Eds.), Proceedings of the 2008 Winter Simulation Conference, Austin, TX, 371–378.Google Scholar
  3. dos Santos, M. I. R. (2009). Nonlinear regression metamodels: A systematic approach. International Journal of Simulation and Process Modelling, 5(3), 241–255.CrossRefGoogle Scholar
  4. dos Santos, M. I. R., & Porta Nova, A. M. O. (2007). Estimating and validating nonlinear regression metamodels in simulation. Communications in Statistics - Simulation and Computation, 36(1), 123–137.CrossRefGoogle Scholar
  5. dos Santos, P. M. R., & dos Santos, M. I. R. (2009). Using subsystem linear regression metamodels in stochastic simulation. European Journal of Operational Research, 196, 1031–1040.CrossRefGoogle Scholar
  6. Friedman, L. W. (1989). The multivariate metamodel in queuing system simulation. Computers and Industrial Engineering, 16, 329–337.CrossRefGoogle Scholar
  7. Friedman, L. W. (1996). The simulation metamodel. Norwell, MA: Kluwer Academic Press.CrossRefGoogle Scholar
  8. Friedman, L. W., & Friedman, H. H. (1985a). MULTIVREG: A SAS program. Journal of Marketing Research (Computer Abstracts), 22, 216–217.Google Scholar
  9. Friedman, L. W., & Friedman, H. H. (1985b). Validating the simulation metamodel: Some practical approaches. Simulation, 44(September), 144–146.CrossRefGoogle Scholar
  10. Hair, J. F., Babin, B., & Anderson, R. (2010). Multivariate data analysis. NJ: Prentice Hall.Google Scholar
  11. Iooss, B. (2009). Numerical study of the metamodel validation process. First International Conference on Advances in System Simulation, SIMUL 2009, September 20–25, 2009, Porto, Portugal, 100–105.Google Scholar
  12. Kleijnen, J. P. C. (1979). Regression metamodels for generalizing simulation result. IEEE Transactionas on Systems, Man, & Cybernetics, SMC, 9(2), 93–96.CrossRefGoogle Scholar
  13. Kleijnen, J. P. C., & Sargent, R. G. (2000). A methodology for fitting and validating metamodels in simulation. European Journal of Operational Research, 120, 14–29.CrossRefGoogle Scholar
  14. Kuei, C.-H., Madu, C. N., & Winch, J. K. (2008). Supply chain quality management: A simulation study. Information and Management Sciences, 19(1), 131–151.Google Scholar
  15. Madu, C. N., & Kuei, C. H. (1994). Regression metamodeling in computer simulation — The state of the art. Simulation Practice and Theory, 2, 27–41.CrossRefGoogle Scholar
  16. Panis, R. P., Myers, R. H., & Houck, E. C. (1994). Combining regression diagnostics with simulation metamodels. European Journal of Operational Research, 73, 85–94.CrossRefGoogle Scholar
  17. Santos, I. R., & Santos, P. R. (2007). Simulation metamodels for modeling output distribution parameters. In S. G. Henderson, G. Biller, M. H. Hsieh, J. Shortle, J. D. Tew, & R. R. Barton (Eds.), Proceedings of the 2007 Winter Simulation Conference, 910–918.Google Scholar
  18. Zobel, C. W., & Keeling, K. B. (2008). Neural network-based simulation metamodels for predicting probability distributions. Computers and Industrial Engineering, 54(4), 879–888.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Zicklin School of BusinessBaruch College, City University of New YorkNew YorkUSA