Encyclopedia of Sustainability Science and Technology

2012 Edition
| Editors: Robert A. Meyers

Incineration Technologies

  • Alfons Buekens
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0851-3_92

Definition of the Subject

Waste incineration is the art of completely combusting waste, while maintaining or reducing emission levels below current emission standards and, when possible, recovering energy, as well as eventual combustion residues. Essential features are as follows: achieving a deep reduction in waste volume; obtaining a compact and sterile residue, yet treating a voluminous flow of flue gas while deeply eliminating a wide array of pollutants.

Destruction by fire is almost as old as humanity. Incineration was systematically applied at some locations, both in England and the USA, from the second half of the nineteenth century [1, 2, 3, 4]. Furnaces widely differed in conception, yet were still poked and de-ashed manually. A successful furnace design was the cell furnace, composed of a series of juxtaposed combustion cells with a fixed grate, or also with two superposed retractable grates [4, 5, 6]. In 1895, the first large continental incinerator was mounted in Hamburg [7...

This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    Lewis H (2007) Centenary history of waste and waste managers in London and South East England, Chartered Institution of Wastes Management, London. http://www.iwm.co.uk/web/FILES/LondonandSouthernCentre/London_and_Southern_Centenary_Histroy.pdf. Accessed July 2011
  2. 2.
    Kleis H, Dalager S (2007) 100 years of waste incineration in Denmark – from refuse destruction plants to high-technology energy works. DTU, Copenhagen. http://www.ramboll.com/services/energy%20and%20climate//media/Files/RGR/Documents/waste%20to%20energy/100YearsLowRes.ashx. Accessed July 2011
  3. 3.
    Reimann DO (1991) Abfallentsorgung mit integrierter Abfallverbrennung – Verfahren von gestern und heute. In: Reimann DO (ed) Rostfeuerungen zur Abfallverbrennung. EF-Verlag für Energie und Umwelt, Berlin, pp 1–20Google Scholar
  4. 4.
    Reimann DO (1991) Die Entwicklung der Rostfeuerungstechnik für die Abfallverbrennung – Vom Zellenofen zur vollautomatischen, emissions- und leistungsgeregelten Rostfeuerung. In: Reimann DO (ed) Rostfeuerungen zur Abfallverbrennung. EF-Verlag für Energie und Umwelt, Berlin, pp 21–60Google Scholar
  5. 5.
    Reimann DO (1991) Rostfeuerungen zur Abfallverbrennung. EF-Verlag für Energie und Umwelt, BerlinGoogle Scholar
  6. 6.
    Tanner R (1965) Die Entwicklung der Von Roll-Müllverbrennungsanlagen. Schweizer Bauzeitung 83(16)Google Scholar
  7. 7.
    Picture of the first Hamburg incinerator (1985) http://fr.wikipedia.org/wiki/Fichier:Erste_M%C3%BCllverbrennungsanlage_Hamburg.jpeg. Accessed 29 Dec 2011
  8. 8.
    Schoeters J (1975) Patent study on mechanical grate development. VUB, BrusselsGoogle Scholar
  9. 9.
    Buekens A, Schoeters J (1984) Final Report Thermal methods in waste disposal – pyrolysis, gasification – incineration – RDF-firing, Contract Number ECI 1011/B 7210/83BGoogle Scholar
  10. 10.
    Ebara Co. (1993) Fluidised-bed combustion of municipal solid waste in Japan. Company documentGoogle Scholar
  11. 11.
    Buekens A (1978) Resource recovery and waste treatment in Japan. Resour Recov Conserv 3(3):275–306CrossRefGoogle Scholar
  12. 12.
    Buekens A (2008) Schmelzverfahren – erfahrungen in Japan. In: Bilitewski B, Urban AI, Faulstich M (eds) Schriftenreihe des Fachgebietes. Abfalltechnik Universität, KasselGoogle Scholar
  13. 13.
    Global Environment Centre Foundation, Japanese Advanced Environment Equipment, http://www.gec.jp/JSIM_DATA/company_index.html
  14. 14.
    E.U. (2009) E.U. Guideline for safe and eco-friendly biomass gasification (gasification – guide). http://www.gasification-guide.eu/. Accessed 11 July 2011
  15. 15.
    Buekens A, Bridgwater AV, Ferrero GL, Maniatis K (eds) (1990) Commercial and marketing aspects of gasifiers. Commission of the European Communities, Elsevier Applied Sciences, Luxembourg, pp 1–239Google Scholar
  16. 16.
    Malkow T (2004) Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal. Waste Manag 24(1):53–79CrossRefGoogle Scholar
  17. 17.
    Buekens A, Masson H (1980) Wood waste gasification as a source of energy. Conserv Recycl 3(3–4):275–284Google Scholar
  18. 18.
    Siemons RV (2002) A development perspective for biomass-fuelled electricity generating technologies. PhD thesis, University of Amsterdam. http://www.cleanfuels.nl/Projects%20&%20publications/Siemons_PhD%20Thesis_Internet.pdf. Accessed 11 July 2011
  19. 19.
    Scheirs J, Kaminsky W (2006) Feedstock recycling and pyrolysis of waste plastics. Wiley, ChichesterCrossRefGoogle Scholar
  20. 20.
    Inguanzoa M, Dominguez A, Menéndez JA, Blancoa CG, Pisa JJ (2002) On the pyrolysis of sewage sludge: the influence of pyrolysis conditions on solid, liquid and gas fractions. J Analy Appl Pyrol 63(1):209–222CrossRefGoogle Scholar
  21. 21.
    Buekens A, Schoeters J (1980) Basic principles of waste pyrolysis and review of European processes. ACS Symposium Series 130:397–421CrossRefGoogle Scholar
  22. 22.
    Buekens A (1978) Schlussfolgerungen hinsichtlich der praktischen Anwendung der Hausmüllpyrolyse aufgrund weltweiter Erfahrungen. Müll und Abfall 12(6):184–191Google Scholar
  23. 23.
    12th international congress on combustion by-products and their health effects: combustion engineering and global health in the 21st century – issues and Challenges, Zhejiang University in Hangzhou, China, 5–8 June 2011Google Scholar
  24. 24.
    Chandler AJ, Eighmy TT, Hartlén J, Hjelmar O, Kosson DS, Sawell SE, van der Sloot HA, Vehlow J (1997) Municipal solid waste incinerator residues. Elsevier, Amsterdam\Lausanne\New York\Oxford\Shannon\TokyoGoogle Scholar
  25. 25.
    Izquierdo M, López-Soler A, Ramonich EV, Barra M, Querol X 2002) Characterisation of bottom ash from municipal solid waste incineration in Catalonia. J Chem Technol Biotechnol 77(5):576–583CrossRefGoogle Scholar
  26. 26.
    Vehlow J (2002) Bottom ash and APC residue management. Expert meeting on power production from waste and biomass – IV, Hanasaari Cultural Center, Espoo, 8–10 Apr 2002. VTT Information Service, Espoo, pp 151–176Google Scholar
  27. 27.
    Sakai S, Hiraoka M (2000) Municipal solid waste incinerator residue recycling by thermal processes. Waste Manag 20:249–258CrossRefGoogle Scholar
  28. 28.
    Bergfeldt B, Jay K, Seifert H, Vehlow J, Christensen TH, Baun DL, Mogensen EPB (2004) Thermal treatment of stabilized air pollution control residues in a waste incinerator pilot plant. Part 1: fate of elements and dioxins. Waste Manag Res 22:49–57CrossRefGoogle Scholar
  29. 29.
    Baun DL, Christensen TH, Bergfeldt B, Vehlow J, Mogensen EPB (2004) Thermal treatment of stabilized air pollution control residues in a waste incinerator pilot plant. Part 2: leaching characteristics of bottom ashes. Waste Manag Res 22:58–68CrossRefGoogle Scholar
  30. 30.
    Achternbosch M, Richers U (2002) Materials flows and investment costs of flue gas cleaning systems of municipal solid waste incinerators. Forschungszentrum Karlsruhe Wissenschaftliche Berichte (FZKA), Karlsruhe, 6726Google Scholar
  31. 31.
    CBR (2011) Personal communicationGoogle Scholar
  32. 32.
    ARGUS – ARBEITSGRUPPE UMWELTSTATISTIK (1981) Bundesweite Hausmüllanalyse 1979/80. Umweltbundesamt, Berlin. Forschungsbericht 103 03 503.Google Scholar
  33. 33.
    ARGUS –ARBEITSGRUPPE UMWELTSTATISTIK (1986) Bundesweite Hausmüllanalyse 1983-1985;Laufende Aktualisierung des Datenmaterials. Umweltbundesamt, Berlin. Forschungsbericht 103 03 508Google Scholar
  34. 34.
    Görner K (1991) Technische verbrennungssysteme, grundlagen, modellbildung, simulation. Springer, Berlin\Heidelberg\New York, p 27CrossRefGoogle Scholar
  35. 35.
    Niessen WR (2010) Combustion and incineration processes: applications in environmental engineering. Taylor and Francis, Baco RatonCrossRefGoogle Scholar
  36. 36.
    Brunner CR (1996) Incineration systems handbook. Incinerator Consultants, RestonGoogle Scholar
  37. 37.
    Hämmerli H (1991) Grundlagen zur Berechnung von Rostfeuerungen. In: Reimann D (ed) Rostfeuerungen zur Abfallverbrennung. EF-Verlag, HrsgGoogle Scholar
  38. 38.
    European Commission (2006) Integrated pollution prevention and control – reference document on the best available techniques for waste incinerationGoogle Scholar
  39. 39.
  40. 40.
    Wilkes JW, Summers CE, Daniels CA, Berard MT (2005) PVC handbook. Hanser Verlag, MŘnchenGoogle Scholar
  41. 41.
    Buekens A (2006) Introduction to feedstock recycling of plastics. In: Scheirs J, Kaminsky W (eds) Feedstock recycling and pyrolysis of waste plastics: Converting waste plastics into diesel and other fuels. John Wiley & SonsGoogle Scholar
  42. 42.
    Buekens A (2008) Solving emission problems in a fluid bed MSWI. In: 5th i-CIPEC: international conference on combustion, incineration/pyrolysis and emission control – eco-conversion of biomass and waste, Chiang MaiGoogle Scholar
  43. 43.
    Briner E, Roth P (1948) Recherches sur l’hydrolyse par la vapeur d’eau de chlorures alcalins seuls ou additionnés de divers adjuvants, Helv Chim Acta 31(2):1352–1360CrossRefGoogle Scholar
  44. 44.
    Buekens A, Schoeters J (1986) PVC and waste incineration. APME, BrusselsGoogle Scholar
  45. 45.
    Chimenos JM, Segarra M, Fernández MA, Espiell F (1999) Characterization of the bottom ash in municipal solid waste incinerator. J Hazard Mater 64(3):211–222CrossRefGoogle Scholar
  46. 46.
    Meima JA, Comans RNJ (1997) Geochemical modeling of weathering reactions in municipal solid waste incinerator bottom ash. Environ Sci Technol 31(5):1269–1276CrossRefGoogle Scholar
  47. 47.
    Commission Decision of 3 May 2000 replacing Decision 94/3/EC establishing a list of wastes pursuant to Article 1(a) of Council Directive 75/442/EEC on waste and Council Decision 94/904/EC establishing a list of hazardous waste pursuant to Article 1(4) of Council Directive 91/689/EEC on hazardous waste (notified under document number C(2000) 1147)Google Scholar
  48. 48.
    Wikipedia, Hazardous WasteGoogle Scholar
  49. 49.
    Buekens A (2011) Hazardous waste and pollution prevention, course organized by VMAC, Premier Provider of Business Intelligence, Abu Dhabi (U.A.E.)Google Scholar
  50. 50.
    Suisse de Réassurance (1995) Les usines de traitement des déchets urbains, ZurichGoogle Scholar
  51. 51.
    EPA’s Chemical Compatibility Chart (1980) http://www.uos.harvard.edu/ehs/environmental/EPAChemicalCompatibilityChart.pdf. Accessed 11 July 2011
  52. 52.
    Mallinckrodt Specialty Chemicals Co–Chemical compatibility list, 5/1989 http://www.uos.harvard.edu/ehs/environmental/MallinckrodtChemicalCompatibilityList.pdf. Accessed 29 Dec 2011
  53. 53.
    Cole-Palmer Instrument Company-Chemical compatibility (2011) http://www.coleparmer.com/techinfo/ChemComp.asp. Accessed 29 Dec 2011
  54. 54.
    University of Georgia-Chemical storage plans for laboratories (2003) http://www.esd.uga.edu/chem/chemstorage.htm, http://www.esd.uga.edu/chem/pub/Ismanual.pdf, http://www.esd.uga.edu/chem/pub/hmrelocating.pdf. Accessed 29 Dec 2011
  55. 55.
    The University of Vermont, http://www.uvm.edu/~esf/chemicalsafety/chemicalstorage.html. Accessed 29 Dec 2011
  56. 56.
    Magazine Lab Manager, Chemical storage plan fundamentals. http://www.labmanager.com/?articles.view/articleNo/1161/article/8-Chemical-Storage-Plan-Fundamentals. Accessed 29 Dec 2011
  57. 57.
    COMAH (Control of Major Accident Hazards), http://www.hse.gov.uk/comah/
  58. 58.
    Ferziger JH, Peric M (2001) Computational methods for fluid dynamics, 2nd edn. Springer, Berlin, http://elib.tu-darmstadt.de/tocs/100561322.pdf
  59. 59.
    Reményi K (1987) Industrial firing. Akadémiai Kiado, Budapest, 496 pGoogle Scholar
  60. 60.
    Ferziger JH, Peric M (2001) Computational methods for fluid dynamics, 2nd edn. Springer, New York, http://elib.tu-darmstadt.de/tocs/100561322.pdf
  61. 61.
    Yang YB, Nasserzadeh V, Swithenbank J (2002) Mathematical modelling of MSW incineration in a travelling bed. J Waste Manag 22(4):369–380CrossRefGoogle Scholar
  62. 62.
    Yang YB, Goodfellow J, Nasserzadeh V, Swithenbank J (2002) Parameter study on the incineration of MSW in packed beds. J Inst Energy 75(504):66–80Google Scholar
  63. 63.
    Lim CN, Nasserzadeh V, Swithenbank J (2001) The modelling of solid mixing in waste incinerator plants. J Powder Technol 114(1):89–95CrossRefGoogle Scholar
  64. 64.
    SUWIC papers (2011) http://www.suwic.group.shef.ac.uk/Journal%20Papers.html. Accessed 29 Dec 2011
  65. 65.
    Buekens A, Mertens J, Schoeters J, Steen P (1979) Experimental techniques and mathematical models in the study of waste pyrolysis and gasification. Conserv Recycl 3(1):1–23CrossRefGoogle Scholar
  66. 66.
    Moilanen A (2006) Thermogravimetric characterisations of biomass and waste for gasification processes, VTT Publications 607. 103 pp. + app. 97 pp. Espoo, FinlandGoogle Scholar
  67. 67.
    Nasserzadeh V, Swithenbank J, Lawrence D, Garrod N, Jones B (1995) Measuring gas-residence times in large municipal incinerators, by means of a pseudo-random binary signal tracer technique. J Inst Energy 68(476):106–120Google Scholar
  68. 68.
    Gorman P, Bergman F, Oberacker D (1984) Field experience in sampling hazardous waste incinerators. US Environmental Protection Agency, Washington, DC, EPA/600/D-84/134 (NTIS PB84201573)Google Scholar
  69. 69.
    Carroll GJ (1994) Pilot scale research on the fate of trace metals in incineration. In: Hester RE (ed) Waste incineration and the environment. Royal Society of Chemistry (Great Britain), Cambridge, pp 95–121CrossRefGoogle Scholar
  70. 70.
  71. 71.
    Dellinger B, Torres JL, Rubey WA, Hall DL, Graham JL (1984) Determination of the thermal decomposition properties of 20 selected hazardous organic compounds. Prepared for the U.S. EPA Industrial Environmental Research Laboratory. Prepared by the University of Dayton Research Institute. EPA-600/2-84-138. NTIS PB-84-232487Google Scholar
  72. 72.
    von Paczkowski K (1979) Der Kessel als Bestandteil einer Müllverbrennungsanlage. Seine Entwicklung, sein Entwurf, WÄRME 85:121–125Google Scholar
  73. 73.
    von Paczkowski K (1984) Tendenzen bei Kesseln in Müllverbrennungsanlagen. In: Thome-Kozmiensky KI (ed) Recycling international. EF-Verlag, BerlinGoogle Scholar
  74. 74.
    Jachimowski A (1978) Kessel für Abfallverbrennungsanlagen. Chemie-Technik 7:403–5Google Scholar
  75. 75.
    Rasch R (1976) Korrosionsvorgänge im Feuerraum. In Kumpf, Maas, Straub, Müll und Abfallbeseitigung, E. Schmidt Verlag, 39 Lfg/III, 7300Google Scholar
  76. 76.
    Vaughan DA, Krause HH, Boyd WK (1974) Study of corrosion in municipal incinerators versus refuse composition. EPA-R-800055Google Scholar
  77. 77.
    Schroer C, Konys J (2002) Rauchgasseitige hochtemperatur-korrosion in müllverbrennungsanlagen – ergebnisse und bewertung einer literaturrecherche. Forschungszentrum Karlsruhe (FZKA), Karlsruhe, 6695Google Scholar
  78. 78.
    Brossard JM, Lebel F, Rapin C, Mareche JF, Chaucherie X, Nicol F, Vilasi M (2009) Lab-scale study on fireside superheaters corrosion in MSWI Plants. In: Proceedings of the 17th annual north american waste-to-energy conference, NAWTEC17, 18–20 May 2009, ChantillyGoogle Scholar
  79. 79.
    Deuerling C, Maguhn J, Nordsieck H, Benker B, Zimmermann R, Warnecke R (2009) Investigation of the mechanisms of heat exchanger corrosion in a municipal waste incineration plant by analysis of the raw gas and variation of operating parameters. Heat Trans Engin 30(10–11):822–831CrossRefGoogle Scholar
  80. 80.
    Olie K, Vermeulen PL, Hutzinger O (1977) Chlorodibenzop-dioxins and chlorodibenzofurans are trace components of fly ash of some municipal incinerators in the Netherlands. Chemosphere 6:455–459CrossRefGoogle Scholar
  81. 81.
    Rappe C, Andersson R, Bergqvist PA, Brohede C, Hansson M, Kjeller LO, Lindström G, Marklund S, Nygren M, Swanson SE, Tysklind M, Wiberg K (1987) Overview on environmental fate of chlorinated dioxins and dibenzofurans-sources, levels and isomeric pattern in various matrices. Chemosphere 16:1603CrossRefGoogle Scholar
  82. 82.
    Rappe C, Andersson R, Bergqvist PA, Brohede C, Hansson M, Kjeller LO, Lindström G, Marklund S, Nygren M, Swanson SE, Tysklind M, Wiberg K (1987) Sources and relative importance of PCDD and PCDF emissions. Waste Manag Res 5(3):225–237CrossRefGoogle Scholar
  83. 83.
    Huang H, Buekens A (1995) On the mechanisms of dioxin formation in combustion processes. Chemosphere 31:4099–4117CrossRefGoogle Scholar
  84. 84.
    Weber R, Iino F, Imagawa T, Takeuchi M, Sakurai T, Sadakata M (2001) Formation of PCDF, PCDD, PCB, and PCN in de novo synthesis from PAH: mechanistic aspects and correlation to fluidized bed incinerators. Chemosphere 44:1429–38CrossRefGoogle Scholar
  85. 85.
    Weber R, Sakurai T, Ueno S, Nishino J (2002) Correlation of PCDD/PCDF and CO values in a MSW incinerator–indication of memory effects in the high temperature/cooling section. Chemosphere 49:127–34CrossRefGoogle Scholar
  86. 86.
    Sakai SI, Hayakawa K, Takatsuki H, Kawakami I (2001) Dioxin-like PCBs released from waste incineration and their deposition flux. Environ Sci Technol 35:3601–7CrossRefGoogle Scholar
  87. 87.
    McKay G (2002) Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review. Chem Engin J 86:343–368CrossRefGoogle Scholar
  88. 88.
    Everaert K, Baeyens J (2002) The formation and emission of dioxins in large scale thermal processes. Chemosphere 46:439–448CrossRefGoogle Scholar
  89. 89.
    Stanmore BR (2004) The formation of dioxins in combustion systems. Combust Flame 136:398–427CrossRefGoogle Scholar
  90. 90.
    Bumb RR, Crummett WB, Cutie SS, Gledhill JR, Hummel RH, Kagel RO, Lamparski LL, Luoma EV, Miller DL, Nestrick TJ, Shadoff LA, Stehl RH, Woods JS (1980) Trace chemistries of fire: a source of chlorinated dioxins. Science 210(4468):385–90CrossRefGoogle Scholar
  91. 91.
    Karasek FW, Dickson LC (1987) Model studies of polychlorinated dibenzo-p-dioxin formation during municipal refuse incineration. Science 237(4816):754–756CrossRefGoogle Scholar
  92. 92.
    Gullett BK, Bruce KR, Beach LO (1990) Formation of chlorinated organics during solid waste combustion. Waste Manag Res 8:203Google Scholar
  93. 93.
    Sidhu S, Edwards P (2002) Role of phenoxy radicals in PCDD/F formation. Int J Chem Kinet 34:531CrossRefGoogle Scholar
  94. 94.
    Vogg H, Metzger M, Stieglitz L (1987) Recent findings on the formation and decomposition of PCDD/PCDF in municipal solid waste incineration. Waste Manag Res 5(3):285–294CrossRefGoogle Scholar
  95. 95.
    Hagenmaier H, Kraft M, Brunner H, Haag R (1987) Catalytic effects of fly ash from waste incineration facilities on the formation and decomposition of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Environ Sci Technol 21(11):1080–1084CrossRefGoogle Scholar
  96. 96.
    Stieglitz L, Zwick G, Beck J, Roth W, Vogg H (1989) On the de-novo synthesis of PCDD/PCDF on fly ash of municipal waste incinerators. Chemosphere 18:1219–1226CrossRefGoogle Scholar
  97. 97.
    Schwarz G, Stieglitz L (1992) Formation of organohalogen compounds in fly ash by metal-catalyzed oxidation of residual carbon. Chemosphere 25(3):277–282CrossRefGoogle Scholar
  98. 98.
    Stieglitz L, Jay K, Hell K, Wilhelm J, Polzer J, Buekens A (2003) Investigation of the formation of polychlorodibenzodioxins /- Furans and of other organochlorine compounds in thermal industrial processes, Forschungszentrum Karlsruhe, Wissenschaftliche Berichte – FZKA 6867Google Scholar
  99. 99.
    Gullett B, Bruce K, Beach L (1990) The effect of metal catalysts on the formation of polychlorinated diobenzo-p-dioxin and polychlorinated diobenzofuran precursors. Chemosphere 20:1945–1952CrossRefGoogle Scholar
  100. 100.
    Olie K, Addink R, Schoonenboom M (1998) Metals as catalysts during the formation and decomposition of chlorinated dioxins and furans in incineration processes. J Air Waste Manag Assoc 48:101–105CrossRefGoogle Scholar
  101. 101.
    Kuzuhara S, Sato H, Kasai E, Nakamura T (2003) Influence of metallic chlorides on the formation of PCDD/Fs during low-temperature oxidation of carbon. Environ Sci Technol 37(11):2431–5CrossRefGoogle Scholar
  102. 102.
    Hinton WS, Lane AM (1991) Characteristics of municipal solid waste incinerator fly ash promoting the formation of polychlorinated dioxins. Chemosphere 22:473–483CrossRefGoogle Scholar
  103. 103.
    Tuppurainen K, Halonen I, Ruokojärvi P, Tarhanen J, Ruuskanen J (1998) Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms: a review. Chemosphere 36(7):1493–1511CrossRefGoogle Scholar
  104. 104.
    Addink R, Paulus RHWL, Olie K (1996) Prevention of polychlorinated dibenzo-p-dioxins/dibenzofurans formation on municipal waste incinerator fly ash. Environ Sci Technol 30(7):2350–2354CrossRefGoogle Scholar
  105. 105.
    Pandelova M, Lenoir D, Schramm K-W (2007) Inhibition of PCDD/F and PCB formation in co-combustion. J Hazard Mater 149(3):615–8CrossRefGoogle Scholar
  106. 106.
    Vehlow J, Braun H, Horch K, Merz A, Schneider J, Stieglitz L, Vogg H (1990) Semi-technical demonstration of the 3R process. Waste Manag Res 8(6):461–472CrossRefGoogle Scholar
  107. 107.
    Weber R, Nagai K, Nishino J, Shiraishi H, Ishida M, Takasuga T, Kondo K, Hiraoka M (2002) Effects of selected metal oxides on the dechlorination and destruction of PCDD and PCDF. Chemosphere 46:1247–1253CrossRefGoogle Scholar
  108. 108.
    Stach J, Pekarek V, Grabic R, Lojkasek M, Pacakova V (2000) Dechlorination of polychlorinated biphenyls, dibenzo-p-dioxins and dibenzofurans on fly ash. Chemosphere 41:1881–1887CrossRefGoogle Scholar
  109. 109.
    Alderman SL (2005) Infrared and X-ray spectroscopic studies of the copper (II) oxide mediated reactions of chlorinated aromatic precursors to PCDD/F, Ph.D. Dissertation Louisiana State University, Chapter 1. http://etd.lsu.edu/docs/available/etd-01112005-150557/unrestricted/Alderman_dis.pdf. Accessed 11 July 2011
  110. 110.
    Buekens A, Huang H (1998) Comparative evaluation of techniques for controlling the formation and emission of chlorinated dioxins/furans in municipal waste incineration. J Hazard Mater 62:1–33CrossRefGoogle Scholar
  111. 111.
    Wielgosiński G (2010) The possibilities of reduction of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans emission. Int J Chem Eng. Review article 392175:11Google Scholar
  112. 112.
    Düwel U, Nottrodt A, Ballschmiter K (1990) Simultaneous sampling of PCDD/PCDF inside the combustion chamber and on four boiler levels of a waste incineration plant. Chemosphere 20(1):839–846, More papers are to be found at: http://www.nottrodt-ing.de/de/publi.htm
  113. 113.
    Wikström E, Ryan S, Touati A, Tabor D, Gullett BK (2004) Origin of carbon in polychlorinated dioxins and furans formed during sooting combustion. Environ Sci Technol 38(13):3778–84CrossRefGoogle Scholar
  114. 114.
    Wikström E, Ryan S, Touati A, Gullett BK (2004) In situ formed soot deposit as a carbon source for polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ Sci Technol 38(7):2097–101CrossRefGoogle Scholar
  115. 115.
    Wikström E, Ryan S, Touati A, Tabor D, Gullett BK (2003) Key parameters for de novo formation of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environ Sci Technol 37(9):1962–70CrossRefGoogle Scholar
  116. 116.
    Addink R, Olie K (1995) Mechanisms of formation and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans in heterogeneous systems. Environ Sci Technol 29:1425–1435CrossRefGoogle Scholar
  117. 117.
    Konduri R, Altwicker ER (1994) Analysis of time scales pertinent to dioxin/furan formation on fly ash surfaces in municipal solid waste incinerators. Chemosphere 28(1):23–45CrossRefGoogle Scholar
  118. 118.
    Zimmermann R, Blumenstock M, Heger HJ, Schramm K-W, Kettrup A (2001) Emission of nonchlorinated and chlorinated aromatics in the flue gas of incineration plants during and after transient disturbances of combustion conditions: delayed emission effects. Environ Sci Technol 35:1019–1030CrossRefGoogle Scholar
  119. 119.
    Kreisz S, Hunsinger H, Vogg H (1997) Technical plastics as PCDD/F absorbers. Chemosphere 34(5–7):1045–1052CrossRefGoogle Scholar
  120. 120.
    Pekarek V, Weber R, Grabic R, Solcova O, Fiserova E, Syc M, Karban J (2007) Matrix effect on the de novo synthesis of polychlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls and benzenes. Chemosphere (Eng) 68(1):51–61CrossRefGoogle Scholar
  121. 121.
    Altwicker ER (1994) Formation of PCDD/F in municipal solid waste incinerators: laboratory and modeling studies. J Hazard Mater 47(1–3):137–161Google Scholar
  122. 122.
    Buekens A, Tsytsik P, Carleer R (2007) Methods for studying the de novo formation of dioxins at a laboratory scale. In: International conference on power engineering-2007, Hangzhou, 23–27 Oct 2007Google Scholar
  123. 123.
    Buekens A, Swithenbank J (2007) CFD modelling of industrial plant from a viewpoint of dioxins formation. In: International conference on power engineering (ICOPE-2007), HangzhouGoogle Scholar
  124. 124.
    Verhulst V, Buekens AG, Spencer P, Eriksson G (1996) The thermodynamic behaviour of metal chlorides and sulfates under the conditions of incineration furnaces. Environ Sci Technol 30:50–56CrossRefGoogle Scholar
  125. 125.
  126. 126.
  127. 127.
  128. 128.
  129. 129.
    Gullett BK, Lemieux PM, Lutes CC, Winterrowd CK, Winters DL (1999) PCDD/F emissions from uncontrolled, domestic waste burning. Presented at Dioxin ‘99, the 19th international symposium on halogenated environmental organic pollutants and POPs, Organohalogen compounds, vol 41, Venice, 12–17 Sept 1999, pp 27–30Google Scholar
  130. 130.
    Lemieux PM, Lutes CC, Abbott JA, Aldous KM (2000) Emissions of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans from the open burning of household waste in Barrels. Environ Sci Technol 34:377–884CrossRefGoogle Scholar
  131. 131.
  132. 132.
  133. 133.
    Buekens A, Yan M, Jiang XG, Li XD, Lu SY, Chi Y, Yan JH, Cen K (2010) Operation of a municipal solid waste incinerator – Pontivy. i-CIPECGoogle Scholar
  134. 134.
  135. 135.
    Saxena SC, Jotshi CK (1994) Fluidized-bed incineration of waste materials. Prog Energy Combust Sci 20(4):281–324CrossRefGoogle Scholar
  136. 136.
    Integrated pollution prevention and control reference document on best available techniques for the waste treatments industries, August 2006Google Scholar
  137. 137.
    Santoleri JJ (1972) Chlorinated hydrocarbon waste recovery and pollution Abatement. In: Proceedings of the 1972-National-incinerator-conference, New YorkGoogle Scholar
  138. 138.
    Mizuno K (2002) Destruction Technologies for ozone depleting substances in Japan. National Institute for Resources and Environment, in UNEP: http://www.unep.fr/ozonaction/information/mmcfiles/3521-e-file2.pdf. UNON Nairobi
  139. 139.
  140. 140.
  141. 141.
    Tsukishima Kankyo Engineering (2010) http://www.tske.co.jp/english/index.html. Accessed Dec 2011
  142. 142.
    Buekens AG, Schoeters JG, Jackson DV, Whalley LW (1986) Status of RDF-production and utilization in Europe. Conserv Recycl 9:309–309Google Scholar
  143. 143.
    Friends of the Earth (2008) Briefing – mechanical and biological treatment (MBT)Google Scholar
  144. 144.
    Wikipedia, Mechanical and biological treatment (MBT)Google Scholar
  145. 145.
    IPPC (1999) Integrated pollution prevention and control (IPPC): reference document on best available techniques in the cement and lime manufacturing industrie. Formation and release of POPs in the cement industry, 2nd edn. European Commission, Directorate General JRC, Institute for Prospective Technological Studies, SevilleGoogle Scholar
  146. 146.
    Ökopol (1999) Economic evaluation of dust abatement techniques in the European cement industry, Report for EC DG11, contract B4-3040/98/000725/MAR/E1; and “Economic evaluation of NOx abatement techniques in the European cement industry”, Report for EC DG11, contract B4-3040/98/000232/MAR/E1. Ökopol GmbH, HamburgGoogle Scholar
  147. 147.
    Rabl A (2000) Criteria for limits on the emission of dust from cement kilns that burn waste as fuel. ARMINES/Ecole des Mines de Paris, ParisGoogle Scholar
  148. 148.
    SINTEF (2006) Formation and release of POPs in the cement industry, second edition. Report of the World Business Council for Sustainable Industry, Cement sustainability initiative, GenevaGoogle Scholar
  149. 149.
    Greenpeace International (1991) http://archive.greenpeace.org/toxics/reports/gopher-reports/inciner.txt. Amsterdam. Accessed 29 Dec 2011
  150. 150.
    Greenpeace International (1994) http://archive.greenpeace.org/toxics/reports/azd/azd.html. Greenpeace Communications, London
  151. 151.
    Costner P (2001) Chlorine, Combustion and Dioxins: Does Reducing Chlorine in Wastes Decrease Dioxin Formation in Waste Incinerators? http://archive.greenpeace.org/toxics/reports/chlorineindioxinout.pdf
  152. 152.
    PVC WASTE AND RECYCLING. Solving a Problem or Selling a Poison? (1999) http://archive.greenpeace.org/toxics/html/content/pvc3.html#top. Accessed 29 Dec 2011
  153. 153.
    Buekens A, Cen KF (2011) Waste incineration, PVC, and dioxins. J Mater Cycles Waste Manag 13:190–197CrossRefGoogle Scholar
  154. 154.
  155. 155.
    Travis CC (1991) Municipal waste incineration risk assessment: deposition, food chain impacts, uncertainty, and research needs. Plenum Press, New YorkCrossRefGoogle Scholar
  156. 156.
    Hattemer-Frey HA, Travis CC (1991) Health effects of municipal waste incineration. CRC Press, Baco RatonGoogle Scholar
  157. 157.
    Roberts SM, Teaf CM, Bean JA (1999) Hazardous waste incineration: evaluating the human health and environmental risks. Lewis, Boca RatonGoogle Scholar

Books and Reviews

  1. Air Pollution Control Association, American Society of Mechanical Engineers. Research Committee on Industrial and Municipal Wastes (1988) Hazardous waste incineration: a re-source document sponsored by the ASME Research Committee on Industrial and Municipal Wastes; co-sponsored by the Air Pollution Control Association, the American Institute of Chemical Engineers, the United States Environmental Protection AgencyGoogle Scholar
  2. Alter H, Horowitz E (1975) STP 592, Resource recovery and utilization. In: Proceedings of the national materials conservation symposium. http://www.astm.org/BOOKSTORE/PUBS/STP592.htm. Accessed July 2011
  3. Bilitewski B, Härdtle G, Marek K (2000) Abfallwirtschaft. Handbuch für Praxis und Lehre. Springer, BerlinGoogle Scholar
  4. Bonner T, Dillon AP (1981) Hazardous waste incineration engineering, pollution technolo-gy review 88. Noyes Data Corporation, Park RidgeGoogle Scholar
  5. Gershman, Brickner & Bratton, Inc. (1986) Small-scale municipal solid waste energy recovery systems. Van Nostrand Reinhold, New YorkCrossRefGoogle Scholar
  6. de Souza-Santos ML (2004) Solid Fuels combustion and gasification: modeling, simulation, and equipment operations. Marcel Dekker, New YorkCrossRefGoogle Scholar
  7. Freeman HM (1988) Incinerating hazardous wastes. Technomic, LancasterGoogle Scholar
  8. Görner K (1991) Technische Verbrennungssysteme. Springer, Berlin\Heidelberg\New YorkCrossRefGoogle Scholar
  9. Grover VI (2002) Recovering energy from waste: various aspects. Science, EnfieldGoogle Scholar
  10. Günther R (1974) Verbrennung und Feuerungen. Springer, Berlin\Heidelberg\New YorkCrossRefGoogle Scholar
  11. Hester RE (1994) Waste incineration and the environment. Royal Society of Chemistry (Great Britain), CambridgeGoogle Scholar
  12. Institute of Electrical and Electronics Engineers (1975) Incineration and treatment of hazardous waste. In: Proceedings of the eighth annual research symposium CRE: conversion of refuse to energy, vol 1. World Environment and Resources Council, Institute of Electrical and Electronics EngineersGoogle Scholar
  13. International conference on combustion, incineration/pyrolysis (i-CIPEC). In: Proceedings of the 1st (Seoul, Korea in 2000), 2nd (Jeju, Korea in 2002), 3rd (Hangzhou, China in 2004), 4th (Kyoto, Japan in 2006), 5th (Chiangmai, Thailand in 2008), and 6th International Conference on Combustion, Incineration/Pyrolysis (Kuala Lumpur, Malaysia, 2010)Google Scholar
  14. International conference on thermal treatment technologiesGoogle Scholar
  15. National Research Council (US). Committee on Health Effects of Waste Incineration (2000) Waste incineration and public health. National Academies, WashingtonGoogle Scholar
  16. National-Incinerator-Conference 1964, 1966, 1968, 1970, 1972, 1974 (visit the proceedings at the WTERT-site of Columbia University, e.g. at http://www.seas.columbia.edu/earth/wtert/sofos/nawtec/1966-National-Incinerator-Conference/). Accessed July 2011
  17. National-Waste-Processing-Conference 1976, 1978, 1980, 1982, 1984 1986, 1988, 1990, 1992, 1994 (visit the proceedings at the WTERT-site of Columbia University, e.g., http://www.seas.columbia.edu/earth/wtert/sofos/nawtec/1980-National-Waste-Processing-Conference/). Accessed July 2011
  18. North American Waste to Energy Conferences (NAWTEC) http://nawtec.swana.org/. Accessed July 2011
  19. EPA (1989) Environment Canada. Proceedings of the international conference on municipal waste combustion. Hollywood, FloridaGoogle Scholar
  20. Robinson WD (1986) The solid waste handbook: a practical guide. Wiley, ChichesterCrossRefGoogle Scholar
  21. Rogoff MJ, Screve F (2011) Waste-to-energy: technologies and project implementation. Elsevier Science, AmsterdamGoogle Scholar
  22. Santoleri JJ, Theodore L, Reynolds J (2000) Introduction to hazardous waste incineration. Wiley-IEEE, New YorkGoogle Scholar
  23. Solid Waste Association of North America (1998) Asian-North American solid waste management conference. Paper presented at the 17th biennial waste processing conference, Atlantic City (Proceedings available at the WTERT-site of Columbia University)Google Scholar
  24. Theodore L, Reynolds J (1987) Introduction to hazardous waste incineration. Wiley, New YorkGoogle Scholar
  25. Warnatz J, Maas U, Dibble RW (2001) Combustion – physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation, 3rd edn. Springer, Berlin\Heidelberg\New YorkGoogle Scholar
  26. World Health Organization. Regional Office for Europe (1985) Solid waste management: selected topics. World Health Organization, CopenhagenGoogle Scholar
  27. Young GC (2010) Municipal solid waste to energy conversion processes: economic, technical, and renewable comparisons. Wiley, HobokenCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Vrije Universiteit Brussel, VUBBrusselsBelgium
  2. 2.Zhejiang UniversityHangzhouChina