Encyclopedia of Sustainability Science and Technology

2012 Edition
| Editors: Robert A. Meyers

Ocean Observatories and Information: Building a Global Ocean Observing Network

  • O. SchofieldEmail author
  • S. M. Glenn
  • M. A. Moline
  • M. Oliver
  • A. Irwin
  • Y. Chao
  • M. Arrott
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0851-3_715

Definition of the Subject and Its Importance

Ocean observatories are collections of networks of sensors that are deployed to sample the ocean physics, chemistry, and biology. The goal of these networks is to overcome chronic undersampling of the oceans by providing sustained measurements in space and time. The data collected by these networks are used to address a range of basic and applied research questions, hindered by a lack of data. The ocean observatories represent collections of platforms capable of collecting data over a range of scales. The platforms include ships, satellites, radars, and a range of Lagrangian systems. Data from the individual platforms are aggregated by sophisticated cyberinfrastructure software systems, which when combined with global communications allow for two-way communication between the shoreside personnel and the networks that can be deployed anywhere in the world. This two-way communication allows the networks to be adaptively configured to improve...

This is a preview of subscription content, log in to check access.


  1. 1.
    Crease J (1962) Velocity measurements in the deep water of the western North Atlantic. J Geophys Res 67:3173–3176CrossRefGoogle Scholar
  2. 2.
    Ducet N, Le Traon PY, Reverdin G (2000) Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J Geophys Res 105:19477–19498CrossRefGoogle Scholar
  3. 3.
    Schmitz WJ (1977) On the deep general circulation in the western North Atlantic. J Mar Res 35:21–28Google Scholar
  4. 4.
    Swallow JC (1971) The Aries current measurements in the western North Atlantic. Philos Trans R Soc Lond A270:451–460Google Scholar
  5. 5.
    Oreskes N (ed) (2003) Plate tectonics: an insider’s history of the modern theory of the Earth. Westview Press Books, Boulder CO. 424 ppGoogle Scholar
  6. 6.
    Antoine D, Andre J, Morel A (1996) Oceanic pimary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll. Global Biogeochem Cycles 10:57–69CrossRefGoogle Scholar
  7. 7.
    Behrenfeld MJ, O’Malley RT, Siegel DA, McClain CR, Sarmiento JL, Feldman GC, Milligan AJ, Falkowski PG, Letelier RM, Boss ES (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:752–755CrossRefGoogle Scholar
  8. 8.
    Longhurst A, Sathyendranath S, Platt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17:1245–1271CrossRefGoogle Scholar
  9. 9.
    Graham NE (1994) Decadal-scale climate variability in the tropical and North Pacific during the 1970s and 1980s: observations and model. Climate Dynamics 10:135–162CrossRefGoogle Scholar
  10. 10.
    Miller AJ, Schneider N (2000) Interdecadal climate regime dynamics in the North Pacific Ocean: theories, observation, and ecosystem, impacts. Prog Oceanogr 47:355–379CrossRefGoogle Scholar
  11. 11.
    Rahmstorf S, Cazenave A, Church JA, Hansen JE, Keeling RF, Parker DE, Somerville RCJ (2007) Recent climate observations compared to projection. Science 316:709. doi:10.1126/science.1136843CrossRefGoogle Scholar
  12. 12.
    De Souza R, Williamsn J, Meyerson FAB (2003) Critical links: population, health, and the environment. Popul Bull 58(3):3–43Google Scholar
  13. 13.
    Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499. doi:10.1126/science.277.5325.494CrossRefGoogle Scholar
  14. 14.
    Large WG, Holland WR, Evans JC (1991) Quasi-geostrophic ocean response to real wind forcing: the effects of temporal smoothing. Am Meteorol Soc 21(7):998–1017Google Scholar
  15. 15.
    Milliff RF, Large WG, Holland WR, McWilliams JC (1996) The general circulation responses of high-resolution North Atlantic Ocean models to synthetic scatterometer winds. J Phys Oceanogr 26:1747–1768CrossRefGoogle Scholar
  16. 16.
    Milliff RF, Large WG, Morzel J, Danabasoglu G, Chin TM (1999) Ocean general circulation model sensitivity to forcing from scatterometer winds. J Geophys Res 104:11337–11358CrossRefGoogle Scholar
  17. 17.
    Milliff RF, Morzel J (2001) The global distribution of the time-average wind stress curl from NSCAT. J Atmos Sci 58(2):109–131CrossRefGoogle Scholar
  18. 18.
    National Research Council (2009) Science at sea: meeting future oceanographic goals with a Robust Academic Research Fleet. National Academy Press, Washington, DCGoogle Scholar
  19. 19.
    Munk W (2000) Oceanography before, and after, the advent of satellites. In: Halpern D (ed) Satellites oceanography and society. Elsevier Science, Amsterdam, pp 1–5CrossRefGoogle Scholar
  20. 20.
    Halpern DA (2000) Satellites, oceanography and society. Elsevier Science, Amsterdam, 361 ppGoogle Scholar
  21. 21.
    Martin-Traykovski LV, Sosik HM (2003) Feature-based classification of optical water types in the Northwest Atlantic based on satellite ocean color data. J Geophys Res 108(C5):3150. doi:10.1029/2001JC001172CrossRefGoogle Scholar
  22. 22.
    Oliver MJ, Kohut JT, Irwin AJ, Glenn SM, Schofield O, Moline MA, Bissett WP (2004) Bioinformatic approaches for objective detection of water masses. J Geophys Res 109:C07S04. doi:10.1029/2003JC002072CrossRefGoogle Scholar
  23. 23.
    Beherenfeld MJ, Boss E, Siegel DA, Sutherland DM (2005) Carbon-based ocean productivity and phytoplankton physiology from space. Global Biogeochem Sci 19:GB1006. doi:10.1029/2004GB002299CrossRefGoogle Scholar
  24. 24.
    Beherenfeld MJ, Falkowski PG (1997) A consumer’s guide to phytoplankton primary productivity models. Limnol Oceanogr 42(7):1479–1491CrossRefGoogle Scholar
  25. 25.
    Goes JI, Saino T, Oaku H, Jiang DL (1999) A method for estimation of sea surface nitrate concentrations from remotely sensed SST and chlorophyll a – a case study for the North Pacific Ocean using OCTS/ADEOS data. IEEE Trans Geosci Remote Sens 37:1633–1644CrossRefGoogle Scholar
  26. 26.
    Swift CT, Mcintosh RE (1983) Considerations for microwave remote-sensing of ocean-surface salinity. IEEE Trans Geosci Remote Sens 21:480–491CrossRefGoogle Scholar
  27. 27.
    Berger M, Camps A, Font J, Kerr Y, Miller J, Johannessen J, Boutin J, Drinkwater MR, Skou N, Floury N, Rast M, Rebhan H, Attema E (2002) Measuring ocean salinity with ESA’s SMOS mission. ESA Bull 111:113fGoogle Scholar
  28. 28.
    Geiger EF, Grossi MD, Trembanis AC, Kohut JT, Oliver MJ (2011) Satellite-derived coastal ocean and estuarine salinity in the Mid-Atlantic. Cont Shelf Res (submitted)Google Scholar
  29. 29.
    Schofield O, Glenn S, Orcutt J, Arrott M, Brown W, Signell R, Moline MA, Chao Y, Chien S, Thompson D, Balasuriya A, Oliver M (2010) Automated sensor networks to advance ocean science. Trans Am Geophys Union 91(39):345–346. doi:10.1029/2010EO390001CrossRefGoogle Scholar
  30. 30.
    Barrick DE (1972) First-order theory and analysis of mf/hf/vhf scatter from the sea. IEEE Trans Antennas Propag AP-20:2–10CrossRefGoogle Scholar
  31. 31.
    Barrick DE, Evens MW, Weber BL (1977) Ocean surface currents mapped by radar. Science 198:138–144CrossRefGoogle Scholar
  32. 32.
    Crombie DD (1955) Doppler spectrum of sea echo at 13.56 Mc/s. Nature 175:681–682CrossRefGoogle Scholar
  33. 33.
    Stewart RH, Joy JW (1974) HF radio measurements of ocean surface currents. Deep Sea Res 21:1039–1049Google Scholar
  34. 34.
    Bromirski PD, Duennebier FK, Stephen RA (2005) Mid-ocean microseisms. Geochem Geophys Geosyst 6:Q04009. doi:10.1029/2004GC000768CrossRefGoogle Scholar
  35. 35.
    Duennebier FK, Harris DW, Jolly J, Babinec J, Copson D, Stiffel K (2002) The Hawaii-2 observatory seismic system. IEEE J Oceanic Eng 27:212–217CrossRefGoogle Scholar
  36. 36.
    Thomson DJ, Lanzerotti LJ, Maclennan CG, Medfor LV (1995) Ocean cable measurements of the tsunami signal from the 1992 Cape Mendocino earthquake. Pure Appl Geophys 144:427–440CrossRefGoogle Scholar
  37. 37.
    Traykovski P, Hay A, Irish JD, Lynch JF (1999) Geometry, migration, and evolution of wave orbital ripples at LEO-15. J Geophys Res 104:1505–1524. doi:10.1029/1998JC900026CrossRefGoogle Scholar
  38. 38.
    Schofield O, Bergmann T, Bissett WP, Grassle F, Haidvogel D, Kohut J, Moline M, Glenn S (2002) Linking regional coastal observatories to provide the foundation for a national ocean observation network. J Oceanic Eng 27(2):146–154CrossRefGoogle Scholar
  39. 39.
    Grundle DS, Timothy DA, Varela DE (2009) Variations of phytoplankton productivity and biomass over an annual cycle in Saanich inlet, a British Columbia fjord. Cont Shelf Res 29:2257–2269. doi:10.1016/j.csr.2009.08.013CrossRefGoogle Scholar
  40. 40.
    Oliver MW, Schofield O, Bergmann T, Glenn SM, Moline MA, Orrico C (2004) In-situ optically derived phytoplankton absorption properties in coastal waters and its utility for estimating primary productivity rates. J Geophys Res 109:C07S11. doi:10.1029/2002JC001627CrossRefGoogle Scholar
  41. 41.
    Kunze E, Dower JF, Beveridge I, Dewey R, Bartlett KP (2006) Observations of biologically generated turbulence in a coastal inlet. Science 313:1168–1170. doi:10.1126/science.1129378CrossRefGoogle Scholar
  42. 42.
    Agrawal YC (2005) The optical volume scattering function: temporal and vertical variability in the water column off the New Jersey coast. Limnol Oceanogr 50:1787–1794CrossRefGoogle Scholar
  43. 43.
    Gargett A, Wells J, Tejada-Martinez AE, Grosch CE (2004) Langmuir supercells: a mechanism for sediment resuspension and transport in shallow seas. Science 356:1925–1928CrossRefGoogle Scholar
  44. 44.
    Edwards RN, Schwalenberg K, Wiloughby EC, Mir R, Scholl C (2010) Marine controlled source electromagnetics and the assessment of seafloor gas hydrate. In: Riedel M, Willoughby EC, Chopra S (eds) Geophysical characterization of gas hydrates, SEG monograph. Society of Exploration Geophysicists, TulsaGoogle Scholar
  45. 45.
    Sullivan PP, Edson JB, Hristov T, Williams JC (2008) Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. J Atmos Sci 65:1225–1245CrossRefGoogle Scholar
  46. 46.
    Moline MA, Oliver MJ, Mobley CD, Sundman L, Blackwell SM, Bergmann T, Bissett WP, Case J, Raymond EH, Schofield O (2007) Bioluminescence in a complex coastal environment I: temporal dynamics of night-time water-leaving radiance. J Geophys Res 112. doi:10.1029/2007JC004138Google Scholar
  47. 47.
    Oliver MJ, Moline M, Mobley C, Sundman LK, Schofield O (2007) Bioluminescence in a complex coastal environment: 2. Prediction of bioluminescent source depth from spectral water-leaving radiance. J Geophys Res. doi:10.1029/2007JC004136Google Scholar
  48. 48.
    Rousseau S, Kunze E, Dewey R, Bartlett K, Dower J (2010) On the efficiency of turbulence production by swimming marine organisms in the open ocean and coastal waters. J Phys Oceanogr 40(9):2107–2121CrossRefGoogle Scholar
  49. 49.
    Franklin B (1785) Sundry marine observations. Trans Am Philos Soc 1(2):294–329Google Scholar
  50. 50.
    Langmuir I (1938) Surface motion of water induced by wind. Science 87:119–123CrossRefGoogle Scholar
  51. 51.
    Niiler PP, Maximenko NA, McWilliams JC (2003) Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations. Geophys Res Lett 30(22):2164. doi:10.1029/2003GL018628CrossRefGoogle Scholar
  52. 52.
    Swallow JC (1955) A neutral-buoyancy float for measuring deep currents. Deep Sea Res 3:74–81CrossRefGoogle Scholar
  53. 53.
    Davis RE, Webb DC, Regier LA, Dufour J (1992) The autonomous lagrangian circulation explorer (ALACE). J Atmos Oceanic Technol 9:264–285CrossRefGoogle Scholar
  54. 54.
    Johnson KS, Berelson WM, Boss ES, Chase Z, Claustre H, Emerson SR, Gruber N, Kortzinger A, Perry MJ, Riser SC (2009) Observing biogeochemical cycles at global scales with profiling floats and gliders: prospects for a global array. Oceanography 22(3):216–225CrossRefGoogle Scholar
  55. 55.
    Gould J, Roemmich D, Wijffels SH, Freeland H, Ignaszewsky M, Jianping X, Pouliquen S, Desaubies Y, Send U, Radhakrishand K, Takeuchi K, Kim K, Danchenkov M, Sutton P, King B, Owens B, Riser S (2004) Argo profiling floats bring new era of in situ ocean observations. EOS 85(19):190–191. doi:10.1126/science.1136843CrossRefGoogle Scholar
  56. 56.
    Rudnick DL, Davis RE, Eriksen CC, Fratantoni DM, Perry MJ (2004) Underwater gliders for ocean research. Mar Technol Soc J 38:73–84CrossRefGoogle Scholar
  57. 57.
    Eriksen CC, Osse TJ, Light RD, Wen T, Lehman TW, Sabin PL, Ballard JW, Chiodi AM (2001) Seaglider: a long-range autonomous underwater vehicle for oceanographic research. IEEE J Oceanic Eng 26:424–436CrossRefGoogle Scholar
  58. 58.
    Sherman J, Davis RE, Owens WB, Valdes J (2001) The autonomous underwater glider “Spray”. IEEE J Oceanic Eng 26:437–446CrossRefGoogle Scholar
  59. 59.
    Webb DC, Simonetti PJ, Jones CP (2001) SLOCUM: an underwater glider propelled by environmental energy. IEEE J Oceanic Eng 26:447–452CrossRefGoogle Scholar
  60. 60.
    Castelao R, Glenn S, Schofield O, Chant R, Wilkin J, Kohut J (2008) Seasonal evolution of hydrographic fields in the central Middle Atlantic Bight from glider observations. Geophys Res Lett 35:L03617. doi:10.1029/2007GL032335CrossRefGoogle Scholar
  61. 61.
    Chao Y, Zhijin L, Farrara JD, Moline MA, Schofield O, Majumdar SJ (2008) Synergistic applications of autonomous underwater vehicles and regional ocean modeling system in coastal ocean forecasting. Limnol Oceanogr 53(6):2251–2263CrossRefGoogle Scholar
  62. 62.
    Davis RE, Ohman MD, Rudnick DL, Sherman JT, Hodges B (2008) Glider surveillance of physics and biology in the southern California Current System. Limnol Oceanogr 53(5):2151–2168CrossRefGoogle Scholar
  63. 63.
    Glenn SM, Jones C, Twardowski M, Bowers L, Kerfoot J, Webb D, Schofield O (2008) Studying resuspension processes in the Mid-Atlantic Bight using Webb slocum gliders. Limnol Oceanogr 53(6):2180–2196CrossRefGoogle Scholar
  64. 64.
    Hjalmar H, Eriksen CC, Rhines PB (2007) Buoyant eddies entering the Labrador Sea observed with gliders and altimetry. J Phys Oceanogr 37:2838–2854CrossRefGoogle Scholar
  65. 65.
    Hodges BA, Fratantoni DM (2009) A thin layer of phytoplankton observed in the Philippine Sea with a synthetic moored array of autonomous gliders. J Geophys Res 114:C10020. doi:10.1029/2009JC005317CrossRefGoogle Scholar
  66. 66.
    Kahl A, Fraser W, Schofield O (2010) Autonomous gliders reveal water column features associated with Adélie penguin foraging. Integr Comp Biol. doi:10.1093/icb/icq098Google Scholar
  67. 67.
    Schofield O, Chant R, Cahill B, Castelao R, Gong D, Kahl A, Kohut J, Montes-Hugo M, Ramadurai R, Ramey P, Xu Y, Glenn SM (2008) Seasonal forcing of primary productivity on broad continental shelves. Oceanography 21(4):104–117CrossRefGoogle Scholar
  68. 68.
    Blackwell SH, Moline MA, Schaffner A, Garrison T, Chang G (2008) Sub-kilometer length scales in coastal waters. Cont Shelf Res 28(2):215–226CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • O. Schofield
    • 1
    Email author
  • S. M. Glenn
    • 1
  • M. A. Moline
    • 2
  • M. Oliver
    • 3
  • A. Irwin
    • 4
  • Y. Chao
    • 5
  • M. Arrott
    • 6
  1. 1.Coastal Ocean Observation Lab, Institute of Marine and Coastal Sciences, School of Environmental and Biological SciencesRutgers UniversityNew BrunswickUSA
  2. 2.Center for Marine and Coastal SciencesCalifornia Polytechnic State UniversitySan Luis ObispoUSA
  3. 3.School of Marine Science and Policy, College of Earth, Ocean and EnvironmentUniversity of DelawareLewesUSA
  4. 4.Mount Allison UniversitySackvilleCanada
  5. 5.Jet Propulsion LaboratoryPasadenaUSA
  6. 6.Scripps Institution of Oceanography & Calit2University of California at San DiegoLa JollaUSA