Encyclopedia of Sustainability Science and Technology

2012 Edition
| Editors: Robert A. Meyers

Silicon Solar Cells, Thin-film

  • Christopher R. WronskiEmail author
  • Nicolas Wyrsch
Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0851-3_462

Definition of Subject and Its Importance

Terrestrial photovoltaics , in which electricity is generated directly from sunlight, is one of the technologies in renewable energy which is actively pursued. There are several approaches that have been developed and are now in mass production with currently the ones based on crystalline silicon wafers being dominant. However, the ones based on thin films have a high potential for significantly lower cost below that of these well-established technologies. An attractive alternative for such a sustainable energy supply is the silicon thin-film solar cell technology. Because of the large differences between these and the well-understood crystalline solar cells , it is important to understand their nature and limitations on performance. It is also essential to understand the advantages that they offer for lowering the cost in mass production of solar panels.

In the last several years the rapid expansion in terrestrial photovoltaics has included...

This is a preview of subscription content, log in to check access.

Bibliography

Primary Literature

  1. 1.
    International Energy Agency (2010) Technology roadmap: solar photovoltaic energy. http://www.iea-pvps.org
  2. 2.
    Chittik RC, Alexander JH, Sterling HE (1969) The preparation and properties of amorphous silicon. J Electrochem Soc 116:77CrossRefGoogle Scholar
  3. 3.
    Carlson DE (1977) Semiconductor device having a body of amorphous silicon. US Patent 4,064,521Google Scholar
  4. 4.
    Spear WE, LeComber PG (1975) Substitutional doping of amorphous silicon. Solid State Commun 17:1193CrossRefGoogle Scholar
  5. 5.
    Carlson DE, Wronski CR (1976) Amorphous silicon solar cells. Appl Phys Lett 28:671CrossRefGoogle Scholar
  6. 6.
    Carlson DE, Wronski CR, Triano A, Daniel RE (1976) Solar cells using Schottky barriers on amorphous silicon. In: Proceedings of 12th IEEE photovoltaic specialists conference, Baton Rouge, LA, p 893Google Scholar
  7. 7.
    Brodsky MH, Frisch MA, Ziegler JF, Lanfard WA (1977) Quantitative analysis of hydrogen in glow discharge amorphous silicon. Appl Phys Lett 30:561CrossRefGoogle Scholar
  8. 8.
    Staebler DL, Wronski CR (1977) Reversible conductivity change in discharge produced amorphous silicon. Appl Phys Lett 31:292CrossRefGoogle Scholar
  9. 9.
    Hanak JJ, Korsun V (1982) Optical stability studies of a-Si:H solar cells. In: Proceeding of the 16th IEEE photovoltaic specialists conference, San Diego, CA, p 1381Google Scholar
  10. 10.
    Vepřek S, Mareček V (1968) The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport. Solid-State Electron 11:683–684CrossRefGoogle Scholar
  11. 11.
    Vepřek S, Iqbal Z, Oswald HR, Webb AP (1981) Properties of polycrystalline silicon prepared by chemical transport in hydrogen plasma at temperatures between 80 and 400 degrees C. J Phys C 14:295–308CrossRefGoogle Scholar
  12. 12.
    Vepřek S, Iqbal Z, Kühne RO, Capezzuto P, Sarott F-A, Gimzewski JK (1983) Properties of microcrystalline silicon: IV: electrical conductivity, electron spin resonance and the effect of gas adsorption. J Phys C 16:6241–6262CrossRefGoogle Scholar
  13. 13.
    Vepřek S, Heintze M, Sarott F-A, Jurcik-Rajman M, Willmott P (1988) Mechanisms of plasma induced silicon deposition and the control of the properties of the deposit. Mater Res Soc Symp Proc 118:3–17CrossRefGoogle Scholar
  14. 14.
    Usui S, Kikuchi M (1979) Properties of heavily doped GD-Si with low resistivity. J Non-Cryst Solids 34:1–11CrossRefGoogle Scholar
  15. 15.
    Spear WE, Willeke G, Le Comber PG, Fitzgerald AG (1981) Electronic properties of microcrystalline silicon films prepared in a glow discharge plasma. J Phys Colloq 42(C4):257–260Google Scholar
  16. 16.
    Wang C, Lukovsky G (1990) Intrinsic microcrystalline silicon deposited by remote PECVD: a new thin-film photovoltaic material. In: Proceedings of the 21st IEEE photovoltaic specialist conference, Kissimmee, FL, pp 1614–1618Google Scholar
  17. 17.
    Tanaka K, Matsuda A (1987) Glow-discharge amorphous silicon: growth process and structure. Mater Sci Rep 2:139CrossRefGoogle Scholar
  18. 18.
    Yang L, Chen LF (1994) The effect of H2 dilution on the stability of a-Si:H based solar cells. Mater Res Soc Symp Proc 336:669CrossRefGoogle Scholar
  19. 19.
    Yang J, Xu X, Guha S (1994) Stability studies of hydrogenated amorphous silicon alloy solar cells prepared with hydrogen dilution. Mater Res Soc Symp Proc 336:687CrossRefGoogle Scholar
  20. 20.
    Bennett M, Rajan K, Kritikson K (1993) Amorphous silicon based solar cells deposited from H2-diluted SiH4 at low temperatures. In: Proceedings of 23rd IEEE photovoltaic specialists conference, Louisville, KY, p 845Google Scholar
  21. 21.
    Lee Y, Jiao L, Liu H, Lu Z, Collins RW, Wronski CR (1996) Stability of a-Si:H solar cells and corresponding intrinsic materials fabricated using hydrogen diluted silane. In: Proceedings of 25th IEEE photovoltaic specialists conference, Washington, DC, p 1165Google Scholar
  22. 22.
    Lu Z, Jiao H, Koval K, Collins RW, Wronski CR (1999) Characteristics of different thickness a-Si:H/metal Schottky barrier cell structures-results and analysis. Mater Res Soc Symp Proc 557:785CrossRefGoogle Scholar
  23. 23.
    Collins RW, Koh J, Lu Y, Kim S, Burnham YS, Wronski CR (1996) Characterization of amorphous silicon solar cell preparation processes by real time spectroscopic ellipsometry. In: Proceedings of 25th IEEE photovoltaic specialists conference, Washington, DC, p 1035Google Scholar
  24. 24.
    Collins RW, Koh J, Ferlauto A, Rovira P, Lee Y, Koval R, Wronski CR (2000) Real time analysis of amorphous and microcrystalline silicon film growth by multichannel ellipsometry. Thin Solid Films 364:129CrossRefGoogle Scholar
  25. 25.
    Flückiger R, Meier J, Keppner H, Götz M, Shah A (1993) Preparation of undoped and doped microcrystalline silicon (μc-Si:H) by VHF-GD for p-i-n solar cells. In: Proceedings of the 23th IEEE photovoltaic specialists conference, Louisville, KY, pp 839–844Google Scholar
  26. 26.
    Meier J, Flückiger R, Keppner H, Shah A (1994) Complete microcrystalline p-i-n solar cell-crystalline or amorphous cell behavior? Appl Phys Lett 65:860–862CrossRefGoogle Scholar
  27. 27.
    Zanzucchi P, Wronski CR, Carlson DE (1977) Optical and photoconductivity properties of discharge produced a-Si. J Appl Phys 48:5227CrossRefGoogle Scholar
  28. 28.
    Tawada Y, Okamoto H, Hamakawa Y (1981) a-SiC:H/a-Si:H heterojunction solar cell having more than 7.1% conversion efficiency. Appl Phys Lett 39:237CrossRefGoogle Scholar
  29. 29.
    Nakamura G, Sato K, Ishihara T, Usui M, Okaniwa K, Yukimoto Y (1983) Tandem type amorphous solar cells. J Non-Cryst Solids 59–60:1111CrossRefGoogle Scholar
  30. 30.
    Ishihara T, Terazono K, Sasaki H, Kawabata K, Itagaki T, Morikawa H, Deguchi M, Sato K, Usui M, Okaniwa K, Aiga M, Otsubo M, Fujikawa K (1987) High efficiency triple-junction amorphous solar cells. In: Proceedings of the 19th IEEE photovoltaic specialists conference, New Orleans, LA, p 749Google Scholar
  31. 31.
    Yang J, Banerjee A, Lord K, Guha S (1998) Correlation of component cells with high efficiency amorphous silicon alloy triple junction solar cells and modules. In: Proceedings of the 2nd world conference on photovoltaic solar energy conversion, Osaka, Japan, p 387Google Scholar
  32. 32.
    Meier J, Dubail S, Fischer D, Anna Selvan JA, Pellaton Vaucher N, Platz R, Hof C, Flückiger R, Kroll U, Wyrsch N, Torres P, Keppner H, Shah A, Ufert K (1995) The ‘Micromorph’ solar cells: a new way to high efficiency thin film silicon solar cells. In: Proceedings of the 13th European photovoltaic solar energy conference, Nice, France, pp 1445–1450Google Scholar
  33. 33.
    Shah A, Vanecek M, Meier J, Meillaud F, Guillet J, Fischer D, Droz C, Niquille X, Faÿ S, Vallat-Sauvain E, Terrazzoni-Daudrix V, Bailat J (2004) Basic efficiency limits, recent experimental results and novel light-trapping schemes in a-Si:H, μc-Si:H and “micromorph tandem” solar cells. J Non-Cryst Solids 338–340:639–645CrossRefGoogle Scholar
  34. 34.
    Yablonovitch E, Cody GD (1982) Intensity enhancement in textured optical sheets for solar cells. IEEE Trans Electron Dev 29:300CrossRefGoogle Scholar
  35. 35.
    Deckman H, Wronski CR, Yablonovitch E (1984) Optical enhancement of solar cells. In: Proceedings of the 17th IEEE photovoltaic specialists conference, Kissimmee, FL, p 995Google Scholar
  36. 36.
    Arya RR, Carlson DE (2002) Amorphous silicon PV module manufacturing at BP solar. Prog Photovoltaics 10:69CrossRefGoogle Scholar
  37. 37.
    Hanak JJ (1981) Laser processing technique for fabricating series connected and tandem junction series-connected solar cells into a solar battery. US Patent 4,292,092Google Scholar
  38. 38.
    Yan B, Yue G, Xu X, Yang J, Guha S (2010) High efficiency amorphous and nanocrystalline silicon solar cells. Phys Status Solidi A 207:671–677CrossRefGoogle Scholar
  39. 39.
    Yamamoto K, Nakajima A, Yoshimi M, Sawada T, Fukuda S, Suezaki T, Ichikawa M, Koi Y, Goto M, Tanaka H, Sasaki T, Tawada Y (2003) Novel hybrid thin film silicon solar cell and module. In: Proceedings of the 3rd world conference on photovoltaic energy conversion, Osaka, Japan, pp 2789–2792Google Scholar
  40. 40.
    Curtins H, Wyrsch N, Favre M, Shah AV (1987) Influence of plasma excitation frequency for a-Si:H thin film deposition. Plasma Chem Plasma Process 7:267–273CrossRefGoogle Scholar
  41. 41.
    Finger F, Kroll U, Viret V, Shah A, Beyer W, Tang X-M, Weber J, Howling A, Hollenstein C (1992) Influences of high exitation frequency (70 MHz) in the glow discharge technique on the process plasma and the properties of hydrogenated amorphous silicon. J Appl Phys 71:5665–5674CrossRefGoogle Scholar
  42. 42.
    Zedlitz R, Heintze M, Bauer GH (1999) Analysis of VHF glow discharge of a Si:H over a wide frequency range. Mater Res Soc Symp Proc 258:147–152CrossRefGoogle Scholar
  43. 43.
    Watanabe T, Azuma K, Nakatani M, Suzuki K, Sonobe T, Shimada T (1986) Chemical vapor deposition of a-Si:H films utilising a microwave excited Ar plasma stream Japanese. J Appl Phys 25:1805CrossRefGoogle Scholar
  44. 44.
    Saito K, Sano M, Ogawa K, Kajita I (1993) High efficiency a-Si:H alloy cell deposited at high deposition rate. J Non-Cryst Solids 164–166:689CrossRefGoogle Scholar
  45. 45.
    Tsai CC, Knights JC, Chang G, Wacker B (1986) Film formation mechanisms in the plasma deposition of hydrogenated amorphous silicon. J Appl Phys 59:2998CrossRefGoogle Scholar
  46. 46.
    Shimizu T, Zhang Q, Nishino T, Takashima H, Kumeda M (1996) Influence of hydrogen content and Si-H bond structure on photocreated dangling bonds in hydrogenated amorphous silicon films. Jpn J Appl Phys 35:4409CrossRefGoogle Scholar
  47. 47.
    Ganguly G, Matsuda A (1996) Role of hydrogen dilution in improvement of a-SiGe:H alloys. J Non-Cryst Solids 198–200:559CrossRefGoogle Scholar
  48. 48.
    Smets AHM, Matsui T, Kondo M (2008) High-rate deposition of microcrystalline silicon p-i-n solar cells in the high pressure depletion regime. J Appl Phys 104:034508CrossRefGoogle Scholar
  49. 49.
    Carlson DE, Gleaton M, Ganguly G (2000) Effects of oil and dopant contaminants on the performance of amorphous silicon solar cells. In: Proceedings of the 16th European photovoltaic solar energy conference, Glasgow, UK, pp 502–505Google Scholar
  50. 50.
    Kinoshita T, Isomura M, Hishikawa Y, Tsuda S (1996) Influence of oxygen and nitrogen in the intrinsic layer of a-Si solar cells. Jpn J Appl Phys 35:3819CrossRefGoogle Scholar
  51. 51.
    Torres P, Meier J, Flückiger R, Kroll U, AnnaSelvan J, Keppner H, Shah A, Littlewood SD, Kelly IE, Giannoulès P (1996) Device grade microcrystalline silicon owing to reduced oxygen contamination. Appl Phys Lett 69:1373–1375CrossRefGoogle Scholar
  52. 52.
    Kilper T, van den Donker MN, Grunsky D, Mück A, Schmitz R, Zastrow U, Rech B, Bräuer G, Klein S, Repmann T (2006) Quantification of the influence of oxygen and nitrogen contamination on the performance of microcrystalline silicon solar cells. In: Proceeding of the 21st European photovoltaic solar energy conference, pp 1738–1743Google Scholar
  53. 53.
    Hrunski D, Rech B, Schmitz R, Mück A, Pinçon O, Breuer U, Beyer W (2008) Influence of contaminations on the performance of thin-film silicon solar cells prepared after in situ reactor plasma cleaning. Thin Solid Films 516:4639–4644CrossRefGoogle Scholar
  54. 54.
    Collins RW (1994) Real time spectroscopic ellipsometry studies of the nucleation, growth and optical functions of thin films Part 1: tetrahedrally bonded materials. Physics of thin films. Academic Press, New York, pp 49–125Google Scholar
  55. 55.
    Shah AV, Meier J, Vallat-Sauvain E, Wyrsch N, Kroll U, Droz C, Graf U (2003) Material and solar cell research in microcrystalline silicon. Sol Energ Mat Sol C 78:469–491CrossRefGoogle Scholar
  56. 56.
    Feitknecht L, Meier J, Torres P, Zürcher J, Shah A (2002) Plasma deposition of thin film silicon: kinetics monitored by optical emission spectroscopy. Sol Energ Mat Sol C 74:539–545CrossRefGoogle Scholar
  57. 57.
    Matsuda A (1983) Formation kinetics and control of microcrystallite in μc-Si:H from glow discharge plasma. J Non-Cryst Solids 59&60:767–774CrossRefGoogle Scholar
  58. 58.
    Strahm B, Howling AA, Sansonnens L, Hollenstein C (2007) Plasma silane concentration as a determining factor for the transition from amorphous to microcrystalline silicon in SiH4/H2 discharges. Plasma Sources Sci Technol 16:80–89CrossRefGoogle Scholar
  59. 59.
    Roca i Cabarrocas P, Fontcuberta i Morral A, Poissant Y (2002) Growth and optoelectronic properties of polymorphous silicon thin films. Thin Solid Films 403:39–46Google Scholar
  60. 60.
    Koh J, Fujiwara H, Lu Y, Wronski CR, Collins RW (1998) Real time spectroscopic ellipsometry for characterization and optimization of amorphous silicon-based solar cell structures. Thin Solid Films 313–314:469CrossRefGoogle Scholar
  61. 61.
    Fujiwara H, Koh J, Wronski CR, Collins RW, Burnham JS (1998) Optical depth profiling of band gap engineered interfaces in amorphous silicon solar cells at monolayer resolution. Appl Phys Lett 72:2993CrossRefGoogle Scholar
  62. 62.
    Ferlauto AS, Ferreira GM, Koval RJ, Pearce JM, Wronski CR, Collins RW, Al-Jassim MM, Jones KM (2002) Thickness evolution of the microstructural and optical properties of Si:H films in the amorphous-to-microcrystalline phase transition region. In: Proceedings of 29th IEEE photovoltaic specialists conference, New Orleans, LA, p 1076Google Scholar
  63. 63.
    Ferlauto AS, Koval RJ, Wronski CR, Collins RW (2001) Phase diagrams for the optimization of rf plasma enhanced chemical vapor deposition of a-Si:H: variations in plasma power and substrate temperature. Mater Res Soc Symp Proc 664:A5.4.1Google Scholar
  64. 64.
    Ferreira GM, Ferlauto AS, Pearce JM, Wronski CR, Ross C, Collins RW (2004) Comparison of phase diagrams for vhf and rf plasma-enhanced chemical vapor deposition of Si:H films. Mater Res Soc Symp Proc 808:A5.2Google Scholar
  65. 65.
    Lu Y, Kim S, Gunes M, Lee Y, Wronski CR, Collins RW (1994) Process-property relationships for a-Si1-xCx:H deposition: excursions in parameter space guided by real time spectroellipsometry. Mater Res Soc Symp Proc 336:595CrossRefGoogle Scholar
  66. 66.
    Tsu DV, Chao BS, Ovshinsky SR, Guha S, Yang J (1998) Effect of hydrogen dilution on the structure of amorphous silicon alloys. Appl Phys Lett 71:1317CrossRefGoogle Scholar
  67. 67.
    Guha S, Yang J, Williamson DL, Lubianiker Y, Cohen JD, Mahan AH (1999) Structural, defect, and device behavior of hydrogenated amorphous Si near and above the onset of microcrystallinity. Appl Phys Lett 74:1860CrossRefGoogle Scholar
  68. 68.
    Wronski CR, Pearce JM, Koval RK, Niu X, Ferlauto AS, Koh J, Collins RW (2002) Light induced defect creation kinetics in thin film protocrystalline silicon materials and their solar cells. Mater Res Soc Symp Proc 715:A13.4Google Scholar
  69. 69.
    Deng J, Pearce JM, Koval RJ, Vlahos V, Collins RW, Wronski CR (2003) Absence of carrier recombination associated with the defect pool model in intrinsic amorphous silicon layers: evidence from current–voltage characteristics on p-i-n and n-i-p solar cells. Appl Phys Lett 82:3023CrossRefGoogle Scholar
  70. 70.
    Koval RJ, Koh J, Lu Z, Jiao L, Wronski CR, Collins RW (1999) Performance and stability of Si:H p-i-n solar cells with i-layers prepared at the thickness-dependent amorphous-to-microcrystalline phase boundary. Appl Phys Lett 75:1553CrossRefGoogle Scholar
  71. 71.
    Koval RJ, Pearce JM, Ferlauto AS, Collins RW, Wronski CR (2001) Evolution of the mobility gap with thickness in hydrogen-diluted intrinsic Si:H materials in the phase transition region and its effect on p-i-n solar cell characteristics. Mater Res Soc Symp Proc 664:A16.4Google Scholar
  72. 72.
    Koval RJ, Pearce JM, Chen C, Ferreira GM, Ferlauto AS, Collins RW, Wronski CR (2002) Microstructurally engineered p-layers for obtaining high open-circuit voltages in a-Si:H n-i-p solar cells. In: Proceedings of the 29th IEEE photovoltaic specialists conference, New Orleans, LA, p 1090Google Scholar
  73. 73.
    Podraza NJ, Ferreira GM, Wronski CR, Collins RW (2005) Development of deposition phase diagrams for thin film Si:H and Si1-xGex:H using real time spectroscopic ellipsometry. Mater Res Soc Symp Proc 862: A.16.3.1Google Scholar
  74. 74.
    Podraza NJ, Wronski CR, Horn MW, Collins RW (2006) Roughness and phase evolution in Si1-xGex:H: guidance for multijunction photovoltaics. In: Proceedings 4th world conference on photovoltaic solar energy conversion, Waikoloa, HI, p 1657Google Scholar
  75. 75.
    Podraza NJ, Wronski CR, Collins RW (2006) Deposition phase diagrams for Si1-xGex:H from real time spectroscopic ellipsometry. J Non-Cryst Solids 352:1263CrossRefGoogle Scholar
  76. 76.
    Stoke JA, Dahal LR, Li J, Podraza NJ, Cao X, Deng X, Collins RW (2008) Optimization of Si:H multijunction n-i-p solar cells through the development of deposition phase diagrams. In: Proceedings of the 33rd photovoltaics specialists conference, San Diego, CA, p 762Google Scholar
  77. 77.
    Stoke JA, Podraza NJ, Li J, Cao X, Deng X, Collins RW (2008) Advanced deposition phase diagrams for guiding Si:H-based multijunction solar cells. J Non-Cryst Solids 354:2435CrossRefGoogle Scholar
  78. 78.
    Acco S, Williamson DL, Stolk PA, Saris FW, van den Boogaard MJ, Sinke WC, van der Weg WF, Roorda S, Zalm PC (1996) Hydrogen solubility and network stability in amorphous silicon. Phys Rev B 53:4415CrossRefGoogle Scholar
  79. 79.
    Baum J, Gleason KK, Pines A, Garroway AN, Reimer JA (1986) Multiple-quantum NMR study of clustering in hydrogenated amorphous silicon. Phys Rev Lett 56:1377CrossRefGoogle Scholar
  80. 80.
    Carlos WE, Taylor PC (1980) Hydrogen-associated disorder modes in amorphous Si:H films. Phys Rev Lett 45:358CrossRefGoogle Scholar
  81. 81.
    Fejfar A, Poruba A, Vaněček M, Kočka J (1996) Precise measurement of the deep defects and surface states in a-Si:H films by absolute CPM. J Non-Cryst Solids 198–200:304CrossRefGoogle Scholar
  82. 82.
    Beyer W, Abo Ghazala MS (1998) Absorption strengths of Si-H vibrational modes in hydrogenated silicon. Mater Res Soc Symp Proc 507:601CrossRefGoogle Scholar
  83. 83.
    Langford AA, Fleet MI, Nelson BP, Lanford WA, Maley N (1992) Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon. Phys Rev B 45:13367CrossRefGoogle Scholar
  84. 84.
    Fang CJ, Gruntz CJ, Ley L, Cardona M (1980) The hydrogen content of a-Ge:H and a-Si:H as determined by IR spectroscopy, gas evolution, and nuclear reaction techniques. J Non-Cryst Solids 35–36:255CrossRefGoogle Scholar
  85. 85.
    Smets AHM, Kessels WMM, van de Sanden MCM (2003) Vacancies and voids in hydrogenated amorphous silicon. Appl Phys Lett 82:1547CrossRefGoogle Scholar
  86. 86.
    Smets AHM, van de Sanden MCM (2007) Relation of the Si-H stretching frequency to the nanostructural Si-H bulk environment. Phys Rev B 76:073202CrossRefGoogle Scholar
  87. 87.
    Smets AHM, Wronski CR, van de Sanden MCM (2010) Hydrogen incorporation in hydrogenated amorphous silicon. To be published in Sol Energ Mat SolGoogle Scholar
  88. 88.
    Stephen JT, Rutland JM, Han D, Wu Y (1997) An NMR investigation of H cluster configurations in a-Si:H. Mater Res Soc Symp Proc 467:159CrossRefGoogle Scholar
  89. 89.
    Bhide VG, Dusane RO, Rajarshi SV, Shaligram AD, David SK (1987) Positron-lifetime studies of hydrogenated amorphous silicon. J Appl Phys 62:108CrossRefGoogle Scholar
  90. 90.
    Suzuki R, Kobayashi Y, Mikado T, Matsuda A, McElheny PJ, Mashima S, Ohgaki H, Chiwaki M, Yamazaki T, Tomimasu T (1991) Characterization of hydrogenated amorphous silicon films by a pulsed positron beam. Jpn J Appl Phys 30:2438CrossRefGoogle Scholar
  91. 91.
    Gordo PM, Ferreira Marques MF, Lopes Gil C, de Lima AP, Lavareda G, Nunes de Carvalho C, Amaral A, Kajcsos Z (2007) Positron annihilation and constant photocurrent method measurements on a-Si:H films: a comparative approach to defect identification. Radiat Phys Chem 76:220CrossRefGoogle Scholar
  92. 92.
    Remeš Z, Vaněček M, Mahan AH, Crandall RS (1997) Silicon network relaxation in amorphous hydrogenated silicon. Phys Rev B 56:12710CrossRefGoogle Scholar
  93. 93.
    Remeš Z, Vaněček M, Torres P, Kroll U, Mahan AH, Crandall RS (1998) Optical determination of the mass density of amorphous and microcrystalline silicon layers with different hydrogen contents. J Non-Cryst Solids 227–230:876CrossRefGoogle Scholar
  94. 94.
    Smets AHM, Wronski CR, Zeman M, van de Sanden MCM (2010) The Staebler-Wronski effect: new physical approaches and insights as a route to reveal its origin. Mater Res Soc Symp Proc 1245:A.14.02Google Scholar
  95. 95.
    Feltrin A, Strahm B, Bugnon G, Sculati-Meillaud F, Ballif C, Howling AA, Hollenstein C (2010) Input silane concentration effect on the a-Si:H to μc-Si:H transition width. Sol Energ Mat Sol C 94:432–435CrossRefGoogle Scholar
  96. 96.
    Houben L, Luysberg M, Hapke P, Carius R, Finger F, Wagner H (1998) Structural properties of microcrystalline silicon in the transition from highly crystalline to amorphous growth. Philos Mag A 77:1447–1460CrossRefGoogle Scholar
  97. 97.
    Droz C (2003) Thin film microcrystalline silicon layers and solar cells: microstructure and electrical performances. PhD Thesis, University of NeuchâtelGoogle Scholar
  98. 98.
    Droz C, Vallat-Sauvain E, Bailat J, Feitknecht L, Meier J, Niquille X, Shah A (2003) Electrical and microstructural characterisation of microcrystalline silicon layers and solar cells. In: Proceedings of the 3rd world conference on photovoltaic energy conversion, Osaka, Japan, pp 1544–1547Google Scholar
  99. 99.
    Vallat-Sauvain E, Kroll U, Meier J, Wyrsch N, Shah A (2000) Microstructure and surface and roughness of microcrystalline silicon prepared by VHF-GD using hydrogen dilution. J Non-Cryst Solids 266–269:125–130CrossRefGoogle Scholar
  100. 100.
    Bailat J, Vallat-Sauvain E, Feitknecht L, Droz C, Shah A (2002) Influence of substrate on the microstructure of microcrystalline silicon layers and cells. J Non-Cryst Solids 299–302:1219–1223CrossRefGoogle Scholar
  101. 101.
    Vallat-Sauvain E, Shah A, Bailat J (2006) Advances in microcrystalline silicon solar cell technologies. Wiley series in materials for electronic and optoelectronic applications, John Wiley & Sons, Ltd, Chichester, pp 133–165Google Scholar
  102. 102.
    Tsai CC, Anderson GB, Thompson R, Wacker B (1989) Control of silicon network structure in plasma deposition. J Non-Cryst Solids 114:151–153CrossRefGoogle Scholar
  103. 103.
    Nakamura K, Yoshida K, Takeoka S, Shimizu I (1995) Roles of atomic hydrogen in chemical annealing. Jpn J Appl Phys 34:442–449CrossRefGoogle Scholar
  104. 104.
    Matsuda A (2004) Microcrystalline silicon growth and device application. J Non-Cryst Solids 338:1–12CrossRefGoogle Scholar
  105. 105.
    Collins RW, Vedam K (1995) Optical properties of solids. In: Trigg GL (ed) Encyclopedia of applied physics. VCH Publishers, New York, pp 285–336Google Scholar
  106. 106.
    Luft W (1988) Characteristics of hydrogenated amorphous silicon-germanium alloys. In: Proceedings of 20th IEEE photovoltaic specialists conference, Las Vegas, NV, p 218Google Scholar
  107. 107.
    Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Sol 15:627CrossRefGoogle Scholar
  108. 108.
    Cody GD, Tiedje T, Brooks BG, Goldstein Y (1982) Disorder and the optical-absorption edge of hydrogenated amorphous silicon. Phys Rev Lett 47:1480CrossRefGoogle Scholar
  109. 109.
    Wronski CR, Lee S, Hicks M, Kumar S (1989) Internal photoemission of holes and the mobility gap of hydrogenated amorphous silicon. Phys Rev Lett 63:1420CrossRefGoogle Scholar
  110. 110.
    Roxlo CB, Abeles B, Wronski CR, Cody GD, Tiedje T (1983) Comment on optical absorption edge in a-Si:H. Solid State Commun 47:985CrossRefGoogle Scholar
  111. 111.
    Tiedje T (1984) Information about band-tail states from time-of-flight experiments. In: Pankove JI (ed) Semiconductors and semimetals, vol 21C. Academic Press, New York, pp 207–238Google Scholar
  112. 112.
    Jackson WB, Biegelsen DK, Nemanich RJ, Kinghts JC (1983) Optical absorption spectra of surface or interface states in hydrogenated amorphous silicon. Appl Phys Lett 42:105CrossRefGoogle Scholar
  113. 113.
    Wyrsch N, Finger F, McMahon TJ, Vaněček M (1991) How to reach more precise interpretation of subgap absorption spectra in terms of deep defect density in a-Si:H. J Non-Cryst Solids 137&138:347–351CrossRefGoogle Scholar
  114. 114.
    Lu Y, Kim S, Gunes M, Wronski CR, Collins RW (1994) Process-property relationships for a-Si1-xCx:H deposition: excursions in parameter space guided by real time spectroellipsometry. Mater Res Soc Symp Proc 336:595CrossRefGoogle Scholar
  115. 115.
    Ganguly G, Matsuda A (1996) Role of hydrogen dilution in improvement of a-SiGe:H alloys. J Non-Cryst Solids 198–200:559CrossRefGoogle Scholar
  116. 116.
    Guha S, Yang J, Pawliklewicz T, Glatfelter T, Ross R, Ovshinsky SR (1989) Band-gap profiling for improving the efficiency of amorphous silicon alloy solar cells. Appl Phys Lett 54:2330CrossRefGoogle Scholar
  117. 117.
    Vaněček M, Kočka J, Poruba A, Fejfar A (1995) Direct measurement of the deep defect density in thin amorphous silicon films with the “absolute” constant photocurrent method. J Appl Phys 78:360566Google Scholar
  118. 118.
    Poruba A, Fejfar A, Remeš Z, Špringer J, Vaněček M, Kočka J, Meier J, Torres P, Shah A (2000) Optical absorption and light scattering in microcrystalline silicon thin films and solar cells. J Appl Phys 88:148–160CrossRefGoogle Scholar
  119. 119.
    Poruba A, Vaněček M, Meier J, Shah A (2002) Fourier transform infrared photocurrent spectroscopy in microcrystalline silicon. J Non-Cryst Solids 299–302:536–540CrossRefGoogle Scholar
  120. 120.
    Vaněček M, Poruba A, Remeš Z, Rosa J, Kamba S, Vorlíček V, Meier J, Shah A (2000) Electron spin resonance and optical characterization of defects in microcrystalline silicon. J Non-Cryst Solids 266–269:519–523CrossRefGoogle Scholar
  121. 121.
    Wyrsch N, Torres P, Goerlitzer M, Vallat E, Kroll U, Shah A, Poruba A, Vaněček M (1999) Hydrogenated microcrystalline silicon for photovoltaic applications. Solid State Phenom 67–68:89–100, Polycrystalline semiconductors V – bulk materials thin films, and devicesCrossRefGoogle Scholar
  122. 122.
    Tanaka K, Matsuda A (1987) Glow-discharge amorphous silicon: growth process and structure. Mater Sci Rep 2:139CrossRefGoogle Scholar
  123. 123.
    Collins RW, Fujiwara H (1997) Growth of hydrogenated amorphous and its alloys. Curr Opin Solid State Mater Sci 2:417–424CrossRefGoogle Scholar
  124. 124.
    Street RA, Winer K (1989) Defect equilibrium in undoped a-Si:H. Phys Rev B 40:6236CrossRefGoogle Scholar
  125. 125.
    Dersch H, Stuke J, Beichler J (1981) Light-induced dangling bonds in hydrogenated amorphous silicon. Appl Phys Lett 38:456CrossRefGoogle Scholar
  126. 126.
    Kamei T, Hata N, Matsuda A, Uchiyama T, Amano S, Tsukamoto K, Yoshioa Y, Hirao T (1996) Deposition and extensive light soaking of highly pure hydrogenated amorphous silicon. Appl Phys Lett 68:2380CrossRefGoogle Scholar
  127. 127.
    Taylor C (1984) Magnetic resonance in a-Si:H. In: Pankove JI (ed) Semiconductors and semimetals, vol 21C. Academic Press, New York, pp 99–154Google Scholar
  128. 128.
    Niu X (2006) Nature and evolution of light induced defects in hydrogenated amorphous silicon. PhD Thesis, Pennsylvania State UniversityGoogle Scholar
  129. 129.
    Siebke S, Stiebig H, Abo-Arais A, Wagner H (1994) Charged and neutral dangling defect states in a-Si:H determined from improved analysis of constant photocurrent method. In: Proceedings of the 1st world conference on photovoltaic energy conversion, Waikoloa, HI, p 543Google Scholar
  130. 130.
    Günes M, Wronski CR (1997) Differences in the densities of charged defect states and the kinetics of Staebler-Wronski effect in undoped hydrogenated amorphous silicon thin films. J Appl Phys 81:3526CrossRefGoogle Scholar
  131. 131.
    Wyrsch N, Beck N, Pipoz P, Goerlitzer M, Beck H, Shah A (1995) Recent progress in the interpretation of a-Si:H transport properties: lifetimes mobilities and mobility-lifetime products. Solid State Phenom 44–46:525–534CrossRefGoogle Scholar
  132. 132.
    Beck N, Wyrsch N, Hof C, Shah A (1996) Mobility lifetime product – a tool for correlating a-Si:H film properties and solar cell performances. J Appl Phys 79:9361–9368CrossRefGoogle Scholar
  133. 133.
    Schumm G, Bauer GH (1991) Equilibrium and non-equilibrium gap state distribution in undoped a-Si:H. Philos Mag B 64:515CrossRefGoogle Scholar
  134. 134.
    Branz HM, Silver M (1990) Potential fluctuation due to inhomogeneity in hydrogenated amorphous silicon and the resulting charged dangling bond defects. Phys Rev B 42:7420CrossRefGoogle Scholar
  135. 135.
    Powell MJ, Dean DC (1993) Improved defect-pool model for charged defects in amorphous silicon. Phys Rev B 48:10815CrossRefGoogle Scholar
  136. 136.
    Shockley W, Read WT (1952) Statistics of the recombination of holes and electrons. Phys Rev 87:835CrossRefGoogle Scholar
  137. 137.
    Deng J, Ross B, Albert M, Collins RW, Wronski CR (2006) Evolution of metastable defects in intrinsic layers of a-Si:H solar cells and corresponding thin film materials characterized by carrier recombination through midgap states. In: Proceedings of the 4th world conference on photovoltaic solar energy conversion, Waikoloa, HI, p 1576Google Scholar
  138. 138.
    Rose A (1962) Concepts in photoconductivity and allied problems. Interscience, New YorkGoogle Scholar
  139. 139.
    Nadazdy V, Zeman M (2004) Origin of charged gap states in a-Si:H and their evolution during light soaking. Phys Rev B 69:165213CrossRefGoogle Scholar
  140. 140.
    Zhong F, Cohen JD (1993) Measured and calculated distributions of deep defect states in hydrogenated amorphous silicon: verification of deep defect relaxation dynamics. Phys Rev Lett 71:597CrossRefGoogle Scholar
  141. 141.
    Finger F, Müller J, Malten C, Wagner H (1998) Electronic states in hydrogenated microcrystalline silicon. Philos Mag A 77:805–830Google Scholar
  142. 142.
    Astakhov O, Carius R, Finger F, Petrusenko Y, Borysenko V, Barankov D (2009) Relationship between defect density and charge carrier transport in amorphous and microcrystalline silicon. Phys Rev B 79:104205CrossRefGoogle Scholar
  143. 143.
    Vetterl O, Groß A, Jana T, Ray S, Lambertz A, Carius R, Finger F (2002) Changes in electric and optical properties of intrinsic microcrystalline silicon upon variation of the structural composition. J Non-Cryst Solids 299–302:772–777CrossRefGoogle Scholar
  144. 144.
    Ritter D, Weiser K, Zeldov E (1987) Steady-state photocarrier grating technique for diffusion length measurement in semiconductors: theory and experimental results for amorphous silicon and semi-insulating GaAs. J Appl Phys 62:4563–4570CrossRefGoogle Scholar
  145. 145.
    Kroll U, Meier J, Keppner H, Littlewood SD, Kelly IE, Giannoulès P, Shah A (1995) Origin and incorporation mechanism for oxygen contaminants in a-Si:H and μc-Si:H films prepared by the very high frequency (70 MHz) glow discharge technique. Mater Res Soc Symp Proc 377:39–44CrossRefGoogle Scholar
  146. 146.
    Goerlitzer M, Torres P, Beck N, Wyrsch N, Keppner H, Pohl J, Shah A (1998) Structural properties and electronic transport in intrinsic microcrystalline silicon deposited by the VHF-GD technique. J Non-Cryst Solids 227–230:996–1000CrossRefGoogle Scholar
  147. 147.
    Švrček V, Pelant I, Kočka J, Fojtík P, Rezek B, Stuchlíkova H, Fejfar A, Stuchlík J, Poruba A, Toušek J (2001) Transport anisotropy in microcrystalline silicon studied by measurement of ambipolar diffusion length. J Appl Phys 89:1800–1805CrossRefGoogle Scholar
  148. 148.
    Wyrsch N, Droz C, Feitknecht L, Goerlitzer M, Kroll U, Meier J, Torres P, Vallat-Sauvain E, Shah A, Vaněček M (2000) Hydrogenated microcrystalline silicon: from material to solar cells. Mater Res Soc Symp Proc 609:A15.1.1–A15.1.11Google Scholar
  149. 149.
    Wyrsch N, Droz C, Feitknecht L, Spitznagel J, Shah A (2002) Transport path in hydrogenated microcrystalline silicon. Mater Res Soc Symp Proc 715:363–368Google Scholar
  150. 150.
    Wyrsch N, Droz C, Feitknecht L, Goerlitzer M, Kroll U, Meier J, Torres P, Vallat-Sauvain E, Shah A, Vaněček M (2000) Hydrogenated microcrystalline silicon: how to correlate layer properties and solar cell performance. J Non-Cryst Solids 266–269:1099–1103CrossRefGoogle Scholar
  151. 151.
    Wyrsch N, Goerlitzer M, Beck N, Meier J, Shah A (1996) Transport properties of compensated μc-Si:H. Mater Res Soc Symp Proc 420:801–806CrossRefGoogle Scholar
  152. 152.
    Dylla T, Reynolds S, Carius R, Finger F (2006) Electron and hole transport in microcrystalline silicon solar cells studied by time-of-flight photocurrent spectroscopy. J Non-Cryst Solids 352:1093–1096CrossRefGoogle Scholar
  153. 153.
    Matsui T, Matsuda A, Kondo M (2004) High efficiency and high-deposition-rate microcrystalline silicon p-i-n solar cells. In: Proceedings of the 19th European photovoltaic solar energy conference, New Orleans, LA, pp 1407–1410Google Scholar
  154. 154.
    Luft W, Tsuo Y (1993) Hydrogenated amorphous silicon alloy deposition processes. Marcel Dekker, New YorkGoogle Scholar
  155. 155.
    Wronski CR, Abeles B, Tiedje T, Cody GD (1982) Recombination centers in phosphorous doped hydrogenated amorphous silicon. Solid State Commun 44:1423CrossRefGoogle Scholar
  156. 156.
    Lee Y, Ferlauto A, Wronski CR (1997) Contributions of bulk, interface and built-in potential to the open circuit voltage of a-Si solar cells. In: Proceedings of the 26th IEEE photovoltaic specialists conference, Anaheim, CA, p 683Google Scholar
  157. 157.
    Wronski CR (1984) The Staebler-Wronski effect. In: Pankove JI (ed) Semiconductors and semimetals, vol 21C. Academic Press, New York, pp 347–373Google Scholar
  158. 158.
    Fritzsche H (1997) Search for explaining the Staebler-Wronski effect. Mater Res Soc Symp Proc 467:19CrossRefGoogle Scholar
  159. 159.
    Wronski CR (1997) The light-induced changes in a-Si:H materials and solar cells-where we are now. Mater Res Soc Symp Proc 467:7CrossRefGoogle Scholar
  160. 160.
    Yang L, Chen LF (1994) The effect of H2 dilution on the stability of a-Si:H based solar cells. Mater Res Soc Symp Proc 336:669CrossRefGoogle Scholar
  161. 161.
    Sakata I, Yamanaka M, Namase S, Hayash Y (1992) Deep defect states in hydrogenated amorphous silicon studied by a constant photocurrent method. J Appl Phys 71:4344CrossRefGoogle Scholar
  162. 162.
    Stutzmann M, Jackson WB, Tsai CC (1985) Light-induced metastable defects in hydrogenated amorphous silicon: a systematic study. Phys Rev B 32:23CrossRefGoogle Scholar
  163. 163.
    Stradins P, Fritzsche H (1994) Photo-induced creation of metastable defects in a-Si:H at low temperature and their effect on photoconductivity. Philos Mag B 69:121CrossRefGoogle Scholar
  164. 164.
    Lee Y, Jiao L, Liu H, Lu Z, Collins RW, Wronski CR (1996) Stability of a-Si solar cells and corresponding intrinsic materials fabricated using hydrogen diluted silane. In: Proceedings of the 25th IEEE photovoltaic specialists conference, Washington, DC, p 1165Google Scholar
  165. 165.
    Young L, Chen L, Catalano A (1991) Intensity and temperature dependence of photodegradation of amorphous silicon solar cells under intense illumination. Appl Phys Lett 59:840CrossRefGoogle Scholar
  166. 166.
    Yang L, Chen L (1993) Fast and slow metastable defects in hydrogenated amorphous silicon. Appl Phys Lett 63:400CrossRefGoogle Scholar
  167. 167.
    Albert A, Deng JD, Pearce JM, Niu X, Collins RW, Wronski CR (2005) The creation and annealing kinetics of fast light induced defect states created by 1 sun illumination in a-Si:H. Mater Res Soc Symp Proc 862:457CrossRefGoogle Scholar
  168. 168.
    Jiao L, Liu H, Semoushikina S, Lee Y, Wronski CR (1996) Initial, rapid light induced changes in hydrogenated amorphous silicon materials and solar cell structures: the effect of charged defects. Appl Phys Lett 69:3713CrossRefGoogle Scholar
  169. 169.
    Wronski C, Deng J, Niu X, Smets A (2010) Dependence of carrier recombination in protocrystalline a-Si:H films and cells on their different light induced gap states. In: Proceedings of the 35th IEEE photovoltaic specialists conference, Honolulu, HI, pp 146–151Google Scholar
  170. 170.
    Deng JD, Ross B, Albert M, Collins RW, Wronski CR (2006) Characterization of the evolution in metastable defects created by recombination of carriers generated by photo-generation and injection in p-i-n a-Si:H solar cells. Mater Res Soc Symp Proc 910:A02–02Google Scholar
  171. 171.
    Branz HM (2003) Hydrogen collision model of metastablity after 5 years: experimental tests and theoretical extensions. Sol Energ Mat Sol C 78:425CrossRefGoogle Scholar
  172. 172.
    Meier J, Torres P, Platz R, Dubail S, Kroll U, Anna Selvan JA, Pellaton-Vaucher N, Hof C, Fischer D, Keppner H, ShahA UK-D, Giannoulès P, Köhler J (1996) On the way towards high-efficiency thin film silicon solar cells by the 'micromorph' concept. Mater Res Soc Symp Proc 420:3–14CrossRefGoogle Scholar
  173. 173.
    Meillaud F, Vallat-Sauvain E, Niquille X, Dubey M, Bailat J, Shah A, Ballif C (2005) Light-induced degradation of thin film amorphous and microcrystalline silicon solar cells. In: Proceedings of the 31st IEEE photovoltaic specialist conference, Lake Buena Vista, FL, pp 1412–1415Google Scholar
  174. 174.
    Meillaud F, Feltrin A, Dominé D, Buehlmann M, Python P, Bugnon G, Billet A, Parascandolo G, Bailat J, Faÿ S, Wyrsch N, Ballif C, Shah A (2009) Limiting factors in the fabrication of microcrystalline silicon solar cells and microcrystalline/amorphous (‘micromorph’) tandems. Philos Mag 89:2599–2621CrossRefGoogle Scholar
  175. 175.
    Deng X, Schiff EA (2007) Amorphous silicon–based solar cells, Chapter 12. In: Hegedus S, Luque A (eds) Handbook of photovoltaic science and engineering. Wiley, SomersatGoogle Scholar
  176. 176.
    Pearce JM, Podraza N, Collins RW, Al-Jassim MM, Jones KM, Deng J, Wronski CR (2007) Optimization of open-circuit voltage in amorphous silicon solar cells with mixed phase amorphous-nanocrystalline p-contacts. J Appl Phys 101:114301CrossRefGoogle Scholar
  177. 177.
    Zhu H, Fonash SJ (1998) Computer simulation for solar cell applications: understanding and design. Mater Res Soc Symp Proc 507:395CrossRefGoogle Scholar
  178. 178.
    Deng J, Wronski CR (2005) Carrier recombination and differential diode quality factors in the dark forward bias current–voltage characteristics of a-Si:H solar cells. J Appl Phys 98:24509CrossRefGoogle Scholar
  179. 179.
    Hegedus S, Salzman N, Fagen E (1998) The relation of dark and illuminated diode parameters to the open-circuit voltage of amorphous silicon p-i-n solar cells. J Appl Phys 63:5126CrossRefGoogle Scholar
  180. 180.
    Crandall RS, Branz HM (1990) Band bending due to charged dangling bonds in amorphous silicon p-i-n solar cells. In: Proceedings of 21th IEEE photovoltaic specialists conference, Kissimmee, FL, p 1630Google Scholar
  181. 181.
    Hovel HJ (1976) Solar cells semiconductors and semimetals, vol II, 1st edn. Academic Press, New YorkGoogle Scholar
  182. 182.
    Benagli S, Borrello D, Vallat-Sauvain E, Meier J, Kroll U, Hoetzel J, Bailat J, Steinhauser J, Marmelo M, Monteduro G, Castens L (2009) In: Proceedings of the 24th European photovoltaic solar energy conference, Hamburg, Germany, pp 2293–2298Google Scholar
  183. 183.
    Yamamoto Y, Nomoto K, Okuno T, Moriuchi S, Nakata Y, Inoguchi T (1987) A role of composition graded layer in p/i interface of amorphous silicon solar cell. In: Proceedings of the 19th IEEE photovoltaic specialists conference, New Orleans, LA, p 981Google Scholar
  184. 184.
    Sakai H, Yoshida T, Fujikake S, Hama T, Ichikawa Y (1980) Effect of p/i interface layer on dark J-V characteristics and Voc in p-i-n a-Si solar cells. J Appl Phys 67:2494Google Scholar
  185. 185.
    von Roedern B (1994) Innovative optimization procedures for solar cells based on a unique model for junction optimization. In: Proceedings of 12th European photovoltaic solar energy conference, Amsterdam, The Netherlands, p 1354Google Scholar
  186. 186.
    Lee Y, Ferlauto A, Wronski CR (1997) Contributions of bulk, interface and built-in potential to the open circuit voltage of a-Si:H solar cells. In: Proceedings of the 26th IEEE photovoltaic specialists conference, p 683Google Scholar
  187. 187.
    Pearce JM, Koval RJ, Ferlauto AS, Collins RW, Wronski CR, Yang J, Guha S (2000) Dependence of open-circuit voltage in hydrogenated protocrystalline silicon solar cells on carrier recombination in p/i interface and bulk regions. Appl Phys Lett 77:3093CrossRefGoogle Scholar
  188. 188.
    Koh J, Lee Y, Fujiwara H, Wronski CR, Collins RW (1998) Optimization of hydrogenated amorphous silicon p-i-n solar cells with two-step i layers guided by real-time spectroscopic ellipsometry. Appl Phys Lett 73:1526CrossRefGoogle Scholar
  189. 189.
    Guha S, Yang J, Nath P, Hack M (1986) Enhancement of open circuit voltage in high efficiency amorphous silicon alloy solar cells. Appl Phys Lett 49:218CrossRefGoogle Scholar
  190. 190.
    Banerjee A (1995) Study of top contact/p-layer junction for the optimization of large-area amorphous silicon multijunction cells. Sol Energ Mat Sol C 36:295CrossRefGoogle Scholar
  191. 191.
    Deng X, Jones SJ, Liu T, Izu M, Ovshinsky SR, Hoffman K (1997) VHF plasma deposition of mc-Si p-layer materials. Mater Res Soc Symp Proc 467:795CrossRefGoogle Scholar
  192. 192.
    Vetterl O, Lambertz A, Dasgupta A, Finger F, Rech B, Kluth O, Wagner H (2001) Thickness dependence of microcrystalline silicon solar cell properties. Sol Energ Mat Sol C 66:345–351CrossRefGoogle Scholar
  193. 193.
    Wyrsch N, Torres P, Meier J, Shah A (1998) Microcrystalline p-i-n cells: a drift controlled device? J Non-Cryst Solids 227–230:1272–1276CrossRefGoogle Scholar
  194. 194.
    Bailat J, Vallat-Sauvain E, Dubey M, Meillaud F, Niquille X, Guillet J, Shah A, Poruba A, Mullerova L, Springer J, Vaněček M (2004) Active layer quality and open-circuit voltage of nip and pin microcrystalline solar cells. In: Proceedings of the 19th European photovoltaic solar energy conference, Paris, France, pp 1541–1544Google Scholar
  195. 195.
    Meillaud F, Vallat-Sauvain E, Niquille X, Dominé D, Shah A, Ballif C (2006) Annealing behaviour and nature of defects of light-soaked microcrystalline silicon solar cells. In: Proceedings of the 21st European photovoltaic solar energy conference, Dresden, Germany, pp 1729–1732Google Scholar
  196. 196.
    Zeman M, Isabella O, Jaeger K, Santbergen R, Liang R, Solntsev S, Krc J (2010) Advanced light trapping in thin-film silicon solar cells. Mater Res Soc Symp Proc 1245:A03–03CrossRefGoogle Scholar
  197. 197.
    Faÿ S, Feitknecht L, Schlüchter R, Kroll U, Vallat-Sauvain E, Shah A (2006) Rough ZnO layers by LP-CVD process and their effect in improving performances of amorphous and microcrystalline silicon solar cells. Sol Energ Mat Sol C 90:2960–2967CrossRefGoogle Scholar
  198. 198.
    Kluth O, Rech B, Houben L, Wieder S, Schöpe G, Beneking C, Wagner H, Löffl A, Schock HW (1999) Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells. Thin Solid Films 351:247–253CrossRefGoogle Scholar
  199. 199.
    Battaglia C, Söderström K, Escarré J, Haug F-H, Dominé D, Cuony P, Boccard M, Bugnon G, Denizot C, Despeisse M, Feltrin A, Ballif C (2010) Efficient light management scheme for thin film silicon solar cells via transparent random nanostructures fabricated by nanoimprinting. Appl Phys Lett 96:213504CrossRefGoogle Scholar
  200. 200.
    Deng X, Narasimhan KL (1994) New evaluation technique for thin-film solar cell back reflector using photothermal deflection spectroscopy. In: Proceeding of the 1st world conference on photovoltaic energy conversion, Waikoloa, HI, pp 555–558Google Scholar
  201. 201.
    Bailat J, Terrazzoni-Daudrix V, Guillet J, Freitas F, Niquille X, Shah A, Ballif C, Scharf T, Morf R, Hansen A, Fischer D, Ziegler Y, Closset A (2005) Recent development of solar cells on low-cost plastic substrates. In: Proceedings of the 20th European photovoltaic solar energy conference, Barcelona, Spain, pp 1529–1532Google Scholar
  202. 202.
    Faÿ S, Steinhauser J, Oliveira N, Vallat-Sauvain E, Ballif C (2007) Opto-electronic properties of rough LP-CVD ZnO:B for use as TCO in thin-film silicon solar cells. Thin Solid Films 515:8558–8561CrossRefGoogle Scholar
  203. 203.
    Agashe C, Kluth O, Schöpe G, Siekmann H, Hüpkes J, Rech B (2003) Optimization of the electrical properties of magnetron sputtered aluminum-doped zinc oxide films for opto-electronic applications. Thin Solid Films 442:167–172CrossRefGoogle Scholar
  204. 204.
    Dominé D, Haug F-J, Battaglia C, Ballif C (2010) Modeling of light scattering from micro- and nanotextured surfaces. J Appl Phys 107:044504CrossRefGoogle Scholar
  205. 205.
    Berginski M, Hüpkes J, Gordijn A, Reetz W, Wätjen T, Rech B, Wuttig M (2008) Experimental studies and limitations of the light trapping and optical losses in microcrystalline silicon solar cells. Sol Energ Mat Sol C 92:1037–1042CrossRefGoogle Scholar
  206. 206.
    Python M, Vallat-Sauvain E, Bailat J, Dominé D, Fesquet L, Shah A, Ballif C (2008) Relation between substrate surface morphology and microcrystalline silicon solar cell performance. J Non-Cryst Solids 354:2258–2262CrossRefGoogle Scholar
  207. 207.
    Python M, Madani O, Dominé D, Meillaud F, Vallat-Sauvain E, Ballif C (2009) Influence of the substrate geometrical parameters on microcrystalline silicon growth for thin-film solar cells. Sol Energ Mat Sol C 93:1714–1720CrossRefGoogle Scholar
  208. 208.
    Python M, Dominé D, Söderström T, Meillaud F, Ballif C (2010) Microcrystalline silicon solar cells: effect of substrate temperature on cracks and their role in post-oxidation. Prog Photovoltaics: Res Appl 18:491–499CrossRefGoogle Scholar
  209. 209.
    Bailat J, Dominé D, Schlüchter R, Steinhauser J, Faÿ S, Freitas F, Bücher C, Feitknecht L, Niquille X, Tscharner R, Shah A, Ballif C (2006) High-efficiency p-i-n microcrystalline and micromorph thin film silicon solar cells deposited on LPCV ZnO coated glass substrates. In: Proceedings of the 4th world conference on photovoltaic energy conversion, Waikoloa, HI, p 1533Google Scholar
  210. 210.
    Dominé D, Buehlmann P, Bailat J, Billet A, Feltrin A, Ballif C (2008) Optical management in high-efficiency thin-film silicon micromorph solar cells with a silicon oxide based intermediate reflector. Phys Status Solidi RRL 2:163–165CrossRefGoogle Scholar
  211. 211.
    Boccard M, Cuony P, Despeisse M, Dominé D, Feltrin A, Wyrsch N, Ballif C (2011) Substrate dependent stability and interplay between optical and electrical properties in μc-Si:H single junction solar cells. Sol Energ Mat Sol C 95:195–198CrossRefGoogle Scholar
  212. 212.
    Grabitz PO, Rau U, Werner JH (2005) Modeling of spatially inhomogeneous solar cells by a multi-diode approach. Phys Status Solidi A 202:2920–2927CrossRefGoogle Scholar
  213. 213.
    Despeisse M, Bugnon G, Feltrin A, Stueckelberger M, Cuony P, Meillaud F, Billet A, Ballif C (2010) Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate. Appl Phys Lett 96:073507CrossRefGoogle Scholar
  214. 214.
    Despeisse M, Boccard M, Bugnon G, Cuony P, Söderström T, Parascandolo G, Stuckelberger M, Charrière M, Lofgren L, Battaglia C, Hänni S, Billet A, Ding L, Nicolay S, Meillaud F, Wyrsch N, Ballif C (2010) Low-conductivity doped layers for improved performance of thin film silicon solar cells on highly textured substrates. In: Proceedings of the 25th European photovoltaic solar energy conference, Valencia, Spain, pp 2793–2797Google Scholar
  215. 215.
    Despeisse M, Battaglia C, Boccard M, Bugnon G, Charrière M, Cuony P, Hänni S, Löfgren L, Meillaud F, Parascandolo G, Söderström T, Ballif C (2011) Optimization of thin film silicon solar cells on highly textured substrates. Phys Status Solidi A 208:1863–1868CrossRefGoogle Scholar
  216. 216.
    Delli Veneri P, Mercaldo LV, Usatii I (2010) Silicon oxide based n-doped layer for improved performance of thin film silicon solar cells. Appl Phys Lett 97:023512CrossRefGoogle Scholar
  217. 217.
    Lipovšek B, Krč J, Isabella O, Zeman M, Topič M (2010) Analysis of thin-film silicon solar cells with white paint back reflectors. Phys Status Solidi C7:1041–1044Google Scholar
  218. 218.
    Yamamoto K, Toshimi M, Suzuki T, Tawada Y, Okamoto T, Nakajima A (1998) Thin film poly-Si solar cell on glass substrate fabricated at low temperature. Mater Res Soc Symp Proc 507:131–138CrossRefGoogle Scholar
  219. 219.
    Mai Y, Klein S, Carius R, Stiebig H, Houben L, Geng X, Finger F (2006) Improvement of open circuit voltage in microcrystalline silicon solar cells using hot wire buffer layers. J Non-Cryst Solids 352:1859–1862CrossRefGoogle Scholar
  220. 220.
    Ballif C, Barraud L, Battaglia C, Benkhaira M, Billet A, Biron R, Boccard M, Bugnon G, Charrière M, Cuony P, Despeisse M, Ding L, Escarré J, Haug F-H, Hänni S, Löfgren L, Meillaud F, Nicolay S, Pahud C, Parascandolo G, Perruche B, De Wolf S, Söderström K, Stückelberger M (2011) Novel materials and superstrates for high-efficiency micromorph solar cells. In: Proceedings of the 26th European photovoltaic solar energy conference, pp 2384–2391Google Scholar
  221. 221.
    Ichikawa Y, Fujikake S, Takayama T, Saito S, Ota H, Yoshida T, Ihara T, Sakai H (1993) Large-area amorphous silicon solar cells with high stabilized efficiency and their fabrication technology. In: Proceedings of the 23rd IEEE photovoltaic specialists conference, Louisville, KY, pp 27–33Google Scholar
  222. 222.
    Yang J, Guha S (1992) Double-junction amorphous silicon-based solar cells with 11% stable efficiency. Appl Phys Lett 61:2917–2919CrossRefGoogle Scholar
  223. 223.
    Guha S, Yang J, Pawliklewicz T, Glatfelter T, Ross R, Ovshinsky SR (1989) Band-gap profiling for improving the efficiency of amorphous silicon alloy solar cells. Appl Phys Lett 54:2330–2332CrossRefGoogle Scholar
  224. 224.
    Yang J, Banerjee A, Lord K, Guha S (1998) Correlation of component cells with high efficiency amorphous silicon alloy triple-junction solar cells and modules. In: Proceedings of the 2nd world conference on photovoltaic energy conference, Vienna, Austria, pp 387–390Google Scholar
  225. 225.
    Fischer D, Dubail S, Anna Selvan JA, Pellaton Vaucher N, Platz R, Hof C, Kroll U, Meier J, Torres P, Keppner H, Wyrsch N, Goetz M, Shah A, Ufert KD (1996) The micromorph solar cell: extending a-Si:H technology towards thin film crystalline silicon. In: Proceedings of the 25th IEEE photovoltaic specialists conference, Washington, DC, pp 1053–1056Google Scholar
  226. 226.
    Dominé D, Bailat J, Steinhauser J, Shah A, Ballif C (2006) Micromorph solar cell optimization using a ZnO layer as intermediate reflector. In: Proceedings of the 4th world conference on photovoltaic energy conference, Waikoloa, HI, pp 1465–1468Google Scholar
  227. 227.
    Myong SY, Sriprapha K, Miyajima S, Konagai M (2007) High efficiency protocrystalline silicon/microcrystalline silicon tandem cell with zinc oxide intermediate layer. Appl Phys Lett 90:263509CrossRefGoogle Scholar
  228. 228.
    Yamamoto K, Nakajima A, Yoshimi M, Sawada T, Fukuda S, Suezaki T, Ichikawa M, Koi Y, Goto M, Meguro T, Matsuda T, Kondo M, Sasaki T, Tawada Y (2005) A thin-film silicon solar cell and module. Prog Photovoltaics 13:489–494CrossRefGoogle Scholar
  229. 229.
    Lambertz A, Dasgupta A, Reetz W, Gordijn A, Carius R, Finger F (2007) Microcrystalline silicon oxide as intermediate reflector for thin film silicon solar cells. In: Proceedings of the 22nd European photovoltaic solar energy conference, Milano, Italy, pp 1839–1842Google Scholar
  230. 230.
    Buehlmann P, Bailat J, Dominé D, Billet A, Meillaud F, Feltrin A, Ballif C (2007) In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells. Appl Phys Lett 91:143505CrossRefGoogle Scholar
  231. 231.
    Feltrin A, Buehlmann P, Dominé D, Despeisse M, Meillaud F, Bugnon G, Parascandolo G, Ballif C (2009) Latest developments on micromorph tandem cells at IMT. In: Technical digest of the 18th international photovoltaic science and engineering conference, Kolkata, India, pp 209–210Google Scholar
  232. 232.
    Meier J, Bailat J, Castens L, Benagli S, Kroll U, Hötzel J, Borrello D, Djeridane Y, Steinhauser J, Vallat-Sauvain E, Orhan J-B, Ufert K, Henz J (2009) High efficiency micromorph tandem developments in KAI-M PECVD reactors. In: Proceedings of the 24th European photovoltaic solar energy conference, Hamburg, Germany, pp 2398–2401Google Scholar
  233. 233.
    Rech B, Repmann T, Wieder S, Ruske M, Stephan U (2006) A new concept for mass production of large area thin-film silicon solar cells on glass. Thin Solid Films 502:300–30CrossRefGoogle Scholar
  234. 234.
    Green MA, Emery K, Hishikawa Y, Warta W (2011) Solar cell efficiency tables (version 37). Prog Photovoltaics: Res Appl 19:84–92CrossRefGoogle Scholar
  235. 235.
    Bailat J, Fesquet L, Orhan J-B, Djeridane Y, Wolf B, Madliger P, Steinhauser J, Benagli S, Borrello D, Castens L, Monteduro G, Marmelo M, Dehbozorghi B, Vallat-Sauvain E, Multone X, Romang D, Boucher J-F, Meier J, Kroll U, Despeisse M, Bugnon G, Ballif C, Marjanovic S, Kohnke G, Borrelli N, Koch K, Liu J, Modavis R, Thelen D, Vallon S, Zakharian A, Weidman D (2010) Recent developments of high-efficiency micromorph® tandem solar cells in KAI-M PECVD reactors. In: Proceedings of the 25th European photovoltaic solar energy conference, Valencia, Spain, pp 2720–2723Google Scholar
  236. 236.
    Yan B, Yue G, Xu X, Yang J, Guha S (2008) Correlation of current mismatch and fill factor in amorphous and nanocrystalline silicon based high efficiency multi-junction solar cells. In: Proceedings of the 33rd IEEE photovoltaic specialists conference, San Diego, CA, pp 257–262Google Scholar
  237. 237.
    Yan B, Yue G, Sivec L, Yang J, Guha S (2011) Innovative dual function nc-SiOx:H leayer leading to a >16% efficient multi-junction thin-fil silicon solar cell. Appl Phys Lett 99:113512CrossRefGoogle Scholar
  238. 238.
    Yue G, Sivec L, Yan B, Yang J, Guha S (2010) High efficiency hydrogenated nanocrystalline silicon solar cells deposited at high rates. Mater Res Soc Symp Proc 1245:A21–01CrossRefGoogle Scholar
  239. 239.
    Green MA, Emery K, King DL, Hishikawa Y, Warta W (206) Solar cell efficiency tables (version 28). Prog Photovoltaics: Res Appl 14:455–461Google Scholar
  240. 240.
    Nakajima A, Ichikawa M, Sawada T, Yoshimi M, Yamamoto K (2004) Optimization of device design for thin-film stacked tandem solar modules in terms of outdoor performance. Jpn J Appl Phys 43:L1162–L1165CrossRefGoogle Scholar
  241. 241.
    Yamamoto K, Nakajima A, Yoshimi M, Sawada T, Fukuda S, Suezaki T, Ichikawa M, Koi Y, Goto M, Miguro T, Matsuda T, Kondo M, Sasaki T, Tawada Y (2005) Thin film silicon solar cell and module. In: Proceedings of the 31st IEEE photovoltaic specialists conference, Lake Buena Vista, FL, pp 1468–1471Google Scholar
  242. 242.
    Hanak JJ (1979) Monolithic solar cell panel of amorphous silicon. Solar Energy 23:145–147CrossRefGoogle Scholar
  243. 243.
    Brecl K, Topič M, Smole F (2005) A detailed study of monolithic contacts and electrical losses in a large-area thin-film module. Prog Photovoltaics: Res Appl 13:297–310Google Scholar
  244. 244.
    Frei M, Wang D (2009) Performance and yield calculations for large-area thin-film modules through distributed modeling. In: Proceedings of the 34th IEEE photovoltaic specialists conference, Philadelphia, PA, pp 1708–1712Google Scholar
  245. 245.
    Söderström T, Haug F-J, Terrazzoni-Daudrix V, Ballif C (2010) Flexible micromorph tandem a-Si/μc-Si:H solar cells. J Appl Phys 107:014507CrossRefGoogle Scholar
  246. 246.
    Koch C, Ito M, Schubert M (2001) Low-temperature deposition of amorphous silicon solar cells. Sol Energ Mat Sol C 68:227–236CrossRefGoogle Scholar
  247. 247.
    Hamers EAG, van den Donker MN, Stannowski B, Schlatmann R, Jongerden GJ (2007) Helianthos: roll-to-roll deposition of flexible solar cell modules. Plasma Process Polymers 4:275–281CrossRefGoogle Scholar
  248. 248.
    Söderström T, Haug F-J, Terrazzoni-Daudrix V, Ballif C (2010) Flexible micromorph tandem a-Si/μc-Si solar cells. J Appl Phys 107:014507CrossRefGoogle Scholar
  249. 249.
    Woodcock JM, Schade H, Maurus H, Dimmler B, Springer J, Ricaud A (1997) A study of the upscalingof thin film solar cell manufacture towards 500 MWP per annum. In: Proceedings of the 14th European photovoltaic solar energy conference, Barcelona, Spain, pp 857–860Google Scholar
  250. 250.
    Vanecek M, Poruba A, Remes Z, Holovsky J, Purkrt A, Babchenko O, Hruska K, Meier J, Kroll U (2009) Five roads towards increased optical absorption and high stable efficiency for thin film silicon solar cells. In: Proceedings of the 24th European photovoltaic solar energy conference, Hamburg, Germany, pp 2286–2289Google Scholar
  251. 251.
    Naughton MJ, Kempa K, Ren ZF, Gao Y, Rybczynski J, Argenti N, Gao W, Wang Y, Peng Y, Naughton JR, McMahon G, Burns MJ, Shepard A, Clary M, Ballif C, Haug F-J, Söderström T, Cubero O, Eminian C (2010) Efficient nanocoax-based solar cells. Phys Status Solidi RRL 4:181–183CrossRefGoogle Scholar
  252. 252.
    Battaglia C, Escarre J, Söderström K, Erni L, Ding L, Bugnon G, Billet A, Boccard M, Barraud L, De Wolf S, Haug F-J, Despeisse M, Ballif C (2011) Nanoimprint lithography for high-efficiency thin-film silicon solar cells. Nano Lett 11:661–665CrossRefGoogle Scholar
  253. 253.
    Battaglia C, Escarre J, Söderström K, Charrière M, Despeisse M, Haug F-J, Ballif C (2011) Nanomoulding of transparent zinc oxide electrodes for efficient light trapping in solar cells. Nat Photon 5:535–538CrossRefGoogle Scholar
  254. 254.
    Haase C, Stiebig H (2006) Optical properties of thin-film silicon solar cells with grating couplers. Prog Photovoltaics: Res Appl 14:629–641CrossRefGoogle Scholar
  255. 255.
    Zhou D, Biswas R (2008) Photonic crystal enhanced light-trapping in thin film solar cells. J Appl Phys 103:093102CrossRefGoogle Scholar

Books and Reviews

  1. Hamakawa Y (2004) Thin-film solar cells: next generation photovoltaics and its applications, Springer series in photonics. Springer, BerlinGoogle Scholar
  2. Poortmans J, Arkhipov V (2006) Thin film solar cells: fabrication, characterization and applications, Wiley series in materials for electronic and optoelectronic applications. Wiley, New YorkCrossRefGoogle Scholar
  3. Schropp REI, Zeman M (1998) Amorphous and microcrystalline silicon solar cells: modeling, materials and device technology, Electronic materials: science and technology. Springer, BerlinCrossRefGoogle Scholar
  4. Shah AV (2010) Thin-film silicon solar cells. EPFL Press, LausanneGoogle Scholar
  5. Street RA (1991) Hydrogenated amorphous silicon. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. Wronski CW, Carlson DE (2001) Amorphous silicon solar cells, clean energy from photovoltaics, vol 1, Series on photoconversion of solar energy. Imperial College Press, SingaporeGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentCenter for Thin Film Devices, Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Photovoltaics and Thin-film Electronics LaboratoryInstitute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne (EPFL)NeuchâtelSwitzerland