Skip to main content

Solar Radiation Versus Climate Change

  • Reference work entry
Encyclopedia of Sustainability Science and Technology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Brightening:

Describes the evidence for a partial recovery from prior dimming at many locations between the 1980s and 2000.

Dimming:

Also known as “global dimming,” a popular expression coined to describe the evidence for a widespread decline in surface solar radiation between the 1950s and 1980s.

Early brightening:

Describes the evidence for an increase in surface solar radiation during the 1930s and 1940s seen in the longest surface radiation records in Europe.

Pyranometer:

Measurement device to record the total flux (diffuse and direct) of solar radiation incident on a horizontal plane at the Earth surface.

Surface solar radiation:

Also known as “global radiation” or “surface insolation,” refers to the solar radiation (sunlight) incident at the Earth’s surface.

Bibliography

  1. Wild M (2010) Introduction to special section on global dimming and brightening. J Geophys Res Atmos 115:D00d00. doi:10.1029/2009jd012841

    Article  Google Scholar 

  2. Ohmura A, Gilgen H, Wild M (1989) Global energy balance archive GEBA, world climate program – water project A7. Rep, Zuerich

    Google Scholar 

  3. Gilgen H, Wild M, Ohmura A (1998) Means and trends of shortwave irradiance at the surface estimated from global energy balance archive data. J Climate 11:2042–2061

    Article  Google Scholar 

  4. Dutton EG, Nelson DW, Stone RS, Longenecker D, Carbaugh G, Harris JM, Wendell J (2006) Decadal variations in surface solar irradiance as observed in a globally remote network. J Geophys Res Atmos 111:D19101. doi:10.1029/2005jd006901

    Article  Google Scholar 

  5. Shi GY, Hayasaka T, Ohmura A, Chen ZH, Wang B, Zhao JQ, Che HZ, Xu L (2008) Data quality assessment and the long-term trend of ground solar radiation in China. J Appl Meteorol Climatol 47:1006–1016. doi:10.1175/2007jamc1493.1

    Article  Google Scholar 

  6. Alpert P, Kishcha P, Kaufman YJ, Schwarzbard R (2005) Global dimming or local dimming?: effect of urbanization on sunlight availability. Geophys Res Lett 32:L17802. doi:10.1029/2005gl023320

    Article  Google Scholar 

  7. Ohmura A, Dutton EG, Forgan B, Frohlich C, Gilgen H, Hegner H, Heimo A, Konig-Langlo G, McArthur B, Muller G, Philipona R, Pinker R, Whitlock CH, Dehne K, Wild M (1998) Baseline Surface Radiation Network (BSRN/WCRP): new precision radiometry for climate research. Bull Am Meteorol Soc 79:2115–2136

    Article  Google Scholar 

  8. Ackerman TP, Stokes GM (2003) The atmospheric radiation measurement program. Phys Today 56:38–44

    Article  Google Scholar 

  9. Stokes GM, Schwartz SE (1994) The atmospheric radiation – measurement (Arm) program – programmatic background and design of the cloud and radiation test-bed. Bull Am Meteorol Soc 75:1201–1221

    Article  Google Scholar 

  10. Augustine JA, DeLuisi JJ, Long CN (2000) SURFRAD – a national surface radiation budget network for atmospheric research. Bull Am Meteorol Soc 81:2341–2357

    Article  Google Scholar 

  11. Philipona R, Durr B, Marty C, Ohmura A, Wild M (2004) Radiative forcing – measured at Earth’s surface – corroborate the increasing greenhouse effect. Geophys Res Lett 31:L03202. doi:10.1029/2003gl018765

    Article  CAS  Google Scholar 

  12. Pinker RT, Zhang B, Dutton EG (2005) Do satellites detect trends in surface solar radiation? Science 308:850–854. doi:10.1126/science.1103159

    Article  CAS  Google Scholar 

  13. Hatzianastassiou N, Matsoukas C, Fotiadi A, Pavlakis KG, Drakakis E, Hatzidimitriou D, Vardavas I (2005) Global distribution of Earth’s surface shortwave radiation budget. Atmos Chem Phys 5:2847–2867

    Article  CAS  Google Scholar 

  14. Hinkelman LM, Stackhouse PW, Wielicki BA, Zhang TP, Wilson SR (2009) Surface insolation trends from satellite and ground measurements: comparisons and challenges. J Geophys Res Atmos 114:D00d20. doi:10.1029/2008jd011004

    Article  Google Scholar 

  15. Evan AT, Heidinger AK, Vimont DJ (2007) Arguments against a physical long-term trend in global ISCCP cloud amounts. Geophys Res Lett 34:L04701. doi:10.1029/2006gl028083

    Article  Google Scholar 

  16. Makowski K, Jaeger EB, Chiacchio M, Wild M, Ewen T, Ohmura A (2009) On the relationship between diurnal temperature range and surface solar radiation in Europe. J Geophys Res Atmos 114:D00d07. doi:10.1029/2008jd011104

    Article  Google Scholar 

  17. Sanchez-Lorenzo A, Brunetti M, Calbo J, Martin-Vide J (2007) Recent spatial and temporal variability and trends of sunshine duration over the Iberian Peninsula from a homogenized data set. J Geophys Res Atmos 112:D20115. doi:10.1029/2007jd008677

    Article  Google Scholar 

  18. Sanchez-Lorenzo A, Calbo J, Martin-Vide J (2008) Spatial and temporal trends in sunshine duration over Western Europe (1938–2004). J Climate 21:6089–6098. doi:10.1175/2008jcli2442.1

    Article  Google Scholar 

  19. Roderick ML, Farquhar GD (2002) The cause of decreased pan evaporation over the past 50 years. Science 298:1410–1411

    CAS  Google Scholar 

  20. Ohmura A, Lang H (1989) Secular variations of global radiation in Europe. A. Deepak, Lille, pp 98–301

    Google Scholar 

  21. Russak V (1990) Trends of solar radiation, cloudiness and atmospheric transparency during recent decades in Estonia. Tellus 42B:206–210

    Google Scholar 

  22. Dutton EG, Stone RS, Nelson DW, Mendonca BG (1991) Recent interannual variations in solar-radiation, cloudiness, and surface-temperature at the south-pole. J Climate 4:848–858

    Article  Google Scholar 

  23. Stanhill G, Moreshet S (1992) Global radiation climate changes – the world network. Clim Change 21:57–75

    Article  Google Scholar 

  24. Stanhill G, Moreshet S (1994) Global radiation climate-change at 7 sites remote from surface sources of pollution. Clim Change 26:89–103

    Article  Google Scholar 

  25. Liepert BG, Fabian P, Grassl H (1994) Solar radiation in Germany – observed trends and assessment of their causes; Part I: regional approach. Beitr Phys Atmos 67:15–29

    Google Scholar 

  26. Abakumova GM, Feigelson EM, Russak V, Stadnik VV (1996) Evaluation of long-term changes in radiation, cloudiness, and surface temperature on the territory of the former soviet union. J Climate 9:1319–1327

    Article  Google Scholar 

  27. Stanhill G, Cohen S (2001) Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric Forest Meteorol 107:255–278

    Article  Google Scholar 

  28. Wild M (2009) Global dimming and brightening: a review. J Geophys Res Atmos 114:D00d16. doi:10.1029/2008jd011470

    Article  Google Scholar 

  29. Liepert BG (2002) Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990. Geophys Res Lett 29:1421. doi:10.1029/2002gl014910

    Article  Google Scholar 

  30. Wild M, Gilgen H, Roesch A, Ohmura A, Long CN, Dutton EG, Forgan B, Kallis A, Russak V, Tsvetkov A (2005) From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science 308:847–850. doi:10.1126/science.1103215

    Article  CAS  Google Scholar 

  31. Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci USA 102:5326–5333. doi:10.1073/pnas.0500656102

    Article  CAS  Google Scholar 

  32. Kumari BP, Londhe AL, Daniel S, Jadhav DB (2007) Observational evidence of solar dimming: offsetting surface warming over India. Geophys Res Lett 34:L21810. doi:10.1029/2007gl031133

    Article  Google Scholar 

  33. Norris JR, Wild M (2007) Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar “dimming” and solar “brightening”. J Geophys Res Atmos 112:D08214. doi:10.1029/2006jd007794

    Article  Google Scholar 

  34. Norris JR, Wild M (2009) Trends in aerosol radiative effects over China and Japan inferred from observed cloud cover, solar “dimming,” and solar “brightening”. J Geophys Res Atmos 114:D00d15. doi:10.1029/2008jd011378

    Article  Google Scholar 

  35. Streets DG, Wu Y, Chin M (2006) Two-decadal aerosol trends as a likely explanation of the global dimming/brightening transition. Geophys Res Lett 33:L15806. doi:10.1029/2006gl026471

    Article  Google Scholar 

  36. Streets DG, Yan F, Chin M, Diehl T, Mahowald N, Schultz M, Wild M, Wu Y, Yu C (2009) Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980–2006. J Geophys Res Atmos 114:D00d18. doi:10.1029/2008jd011624

    Article  CAS  Google Scholar 

  37. Mishchenko MI, Geogdzhayev IV, Rossow WB, Cairns B, Carlson BE, Lacis AA, Liu L, Travis LD (2007) Long-term satellite record reveals likely recent aerosol trend. Science 315:1543–1543. doi:10.1126/science.1136709

    Article  CAS  Google Scholar 

  38. Russak V (2009) Changes in solar radiation and their influence on temperature trend in Estonia (1955–2007). J Geophys Res Atmos 114:D00d01. doi:10.1029/2008jd010613

    Article  Google Scholar 

  39. Ohvril H, Teral H, Neiman L, Kannel M, Uustare M, Tee M, Russak V, Okulov O, Joeveer A, Kallis A, Ohvril T, Terez EI, Terez GA, Gushchin GK, Abakumova GM, Gorbarenko EV, Tsvetkov AV, Laulainen N (2009) Global dimming and brightening versus atmospheric column transparency, Europe, 1906–2007. J Geophys Res Atmos 114:D00d12. doi:10.1029/2008jd010644

    Article  Google Scholar 

  40. Liley JB (2009) New Zealand dimming and brightening. J Geophys Res Atmos 114:D00d10. doi:10.1029/2008jd011401

    Article  Google Scholar 

  41. Long CN, Dutton EG, Augustine JA, Wiscombe W, Wild M, McFarlane SA, Flynn CJ (2009) Significant decadal brightening of downwelling shortwave in the continental United States. J Geophys Res Atmos 114:D00d06. doi:10.1029/2008jd011263

    Article  Google Scholar 

  42. Wild M, Ohmura A, Makowski K (2007) Impact of global dimming and brightening on global warming. Geophys Res Lett 34:L04702. doi:10.1029/2006gl028031

    Article  Google Scholar 

  43. Wild M, Truessel B, Ohmura A, Long CN, Konig-Langlo G, Dutton EG, Tsvetkov A (2009) Global dimming and brightening: an update beyond 2000. J Geophys Res Atmos 114:D00d13. doi:10.1029/2008jd011382

    Article  Google Scholar 

  44. Loeb NG, Wielicki BA, Rose FG, Doelling DR (2007) Variability in global top-of-atmosphere shortwave radiation between 2000 and 2005. Geophys Res Lett 34:L03704. doi:10.1029/2006gl028196

    Article  Google Scholar 

  45. Ohmura A (2009) Observed decadal variations in surface solar radiation and their causes. J Geophys Res Atmos 114:D00d05. doi:10.1029/2008jd011290

    Article  Google Scholar 

  46. McConnell JR, Edwards R, Kok GL, Flanner MG, Zender CS, Saltzman ES, Banta JR, Pasteris DR, Carter MM, Kahl JDW (2007) 20th-century industrial black carbon emissions altered arctic climate forcing. Science 317:1381–1384. doi:10.1126/science.1144856

    Article  CAS  Google Scholar 

  47. Wild M, Ohmura A (2004) BSRN longwave downward radiation measurements combined with GCMs show promise for greenhouse detection studies. GEWEX News 14:9–10

    Google Scholar 

  48. Wild M, Grieser J, Schaer C (2008) Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle. Geophys Res Lett 35:L17706. doi:10.1029/2008gl034842

    Article  Google Scholar 

  49. Wild M, Ohmura A, Cubasch U (1997) GCM-simulated surface energy fluxes in climate change experiments. J Climate 10:3093–3110

    Article  Google Scholar 

  50. Ruckstuhl C, Philipona R, Behrens K, Coen MC, Durr B, Heimo A, Matzler C, Nyeki S, Ohmura A, Vuilleumier L, Weller M, Wehrli C, Zelenka A (2008) Aerosol and cloud effects on solar brightening and the recent rapid warming. Geophys Res Lett 35:L12708. doi:10.1029/2008gl034228

    Article  Google Scholar 

  51. Philipona R, Behrens K, Ruckstuhl C (2009) How declining aerosols and rising greenhouse gases forced rapid warming in Europe since the 1980s. Geophys Res Lett 36:L02806. doi:10.1029/2008gl036350

    Article  Google Scholar 

  52. Wild M (2009) How well do IPCC-AR4/CMIP3 climate models simulate global dimming/brightening and twentieth-century daytime and nighttime warming? J Geophys Res Atmos 114:D00d11. doi:10.1029/2008jd011372

    Article  Google Scholar 

  53. Wild M, Schmucki E (2010) Assessment of global dimming and brightening in IPCC-AR4/CMIP3 models and ERA40. Clim Dynam. doi:10.1007/s00382-010-0939-3

    Google Scholar 

  54. Ruckstuhl C, Norris JR (2009) How do aerosol histories affect solar “dimming” and “brightening” over Europe?: IPCC-AR4 models versus observations. J Geophys Res Atmos 114:D00d04. doi:10.1029/2008jd011066

    Article  Google Scholar 

  55. Wild M, Ohmura A, Gilgen H, Rosenfeld D (2004) On the consistency of trends in radiation and temperature records and implications for the global hydrological cycle. Geophys Res Lett 31:L11201. doi:10.1029/2003gl019188

    Article  Google Scholar 

  56. Wild M, Liepert B (2010) The Earth radiation balance as driver of the global hydrological cycle. Environ Res Lett 5:Artn 025003. doi:10.1088/1748-9326/5/2/025003

    Article  CAS  Google Scholar 

  57. Robock A, Li HB (2006) Solar dimming and CO2 effects on soil moisture trends. Geophys Res Lett 33:L20708. doi:10.1029/2006gl027585

    Article  CAS  Google Scholar 

  58. Ohmura A, Bauder A, Muller H, Kappenberger G (2007) Long-term change of mass balance and the role of radiation. Ann Glaciol 46:367–374

    Article  Google Scholar 

  59. Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–U87. doi:10.1038/Nature07949

    Article  CAS  Google Scholar 

  60. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/Joc.1181

    Article  Google Scholar 

Download references

Acknowledgments

I acknowledge support from the National Centre for Competence in Climate Research (NCCR Climate) of the Swiss National Science Foundation. This entry contributes to the efforts of the working group “Global Energy Balance” of the International Radiation Commission (IRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Wild .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Wild, M. (2012). Solar Radiation Versus Climate Change . In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_448

Download citation

Publish with us

Policies and ethics