Solar Radiation Versus Climate Change


Definition of the Subject

Solar radiation incident at the Earth’s surface is the ultimate energy source for life on the planet, and largely determines the climatic conditions of our habitats. The amount of solar energy reaching the surface is a major component of the surface energy balance and governs a large number of diverse surface processes, such as evaporation and associated hydrological components, snow and glacier melt, plant photosynthesis and related terrestrial carbon uptake, as well as the diurnal and seasonal course of surface temperatures.

It has also major practical implications, for example, for solar energy technologies and agricultural productivity. Changes in the amount of solar energy reaching the Earth’s surface can therefore have profound environmental, societal, and economic implications. There is increasing evidence that the amount of solar radiation incident at the Earth’s surface is not stable over the years but undergoes significant decadal variations. This...

This is a preview of subscription access content, login to check access



I acknowledge support from the National Centre for Competence in Climate Research (NCCR Climate) of the Swiss National Science Foundation. This entry contributes to the efforts of the working group “Global Energy Balance” of the International Radiation Commission (IRC).


  1. 1.
    Wild M (2010) Introduction to special section on global dimming and brightening. J Geophys Res Atmos 115:D00d00. doi:10.1029/2009jd012841CrossRefGoogle Scholar
  2. 2.
    Ohmura A, Gilgen H, Wild M (1989) Global energy balance archive GEBA, world climate program – water project A7. Rep, ZuerichGoogle Scholar
  3. 3.
    Gilgen H, Wild M, Ohmura A (1998) Means and trends of shortwave irradiance at the surface estimated from global energy balance archive data. J Climate 11:2042–2061CrossRefGoogle Scholar
  4. 4.
    Dutton EG, Nelson DW, Stone RS, Longenecker D, Carbaugh G, Harris JM, Wendell J (2006) Decadal variations in surface solar irradiance as observed in a globally remote network. J Geophys Res Atmos 111:D19101. doi:10.1029/2005jd006901CrossRefGoogle Scholar
  5. 5.
    Shi GY, Hayasaka T, Ohmura A, Chen ZH, Wang B, Zhao JQ, Che HZ, Xu L (2008) Data quality assessment and the long-term trend of ground solar radiation in China. J Appl Meteorol Climatol 47:1006–1016. doi:10.1175/2007jamc1493.1CrossRefGoogle Scholar
  6. 6.
    Alpert P, Kishcha P, Kaufman YJ, Schwarzbard R (2005) Global dimming or local dimming?: effect of urbanization on sunlight availability. Geophys Res Lett 32:L17802. doi:10.1029/2005gl023320CrossRefGoogle Scholar
  7. 7.
    Ohmura A, Dutton EG, Forgan B, Frohlich C, Gilgen H, Hegner H, Heimo A, Konig-Langlo G, McArthur B, Muller G, Philipona R, Pinker R, Whitlock CH, Dehne K, Wild M (1998) Baseline Surface Radiation Network (BSRN/WCRP): new precision radiometry for climate research. Bull Am Meteorol Soc 79:2115–2136CrossRefGoogle Scholar
  8. 8.
    Ackerman TP, Stokes GM (2003) The atmospheric radiation measurement program. Phys Today 56:38–44CrossRefGoogle Scholar
  9. 9.
    Stokes GM, Schwartz SE (1994) The atmospheric radiation – measurement (Arm) program – programmatic background and design of the cloud and radiation test-bed. Bull Am Meteorol Soc 75:1201–1221CrossRefGoogle Scholar
  10. 10.
    Augustine JA, DeLuisi JJ, Long CN (2000) SURFRAD – a national surface radiation budget network for atmospheric research. Bull Am Meteorol Soc 81:2341–2357CrossRefGoogle Scholar
  11. 11.
    Philipona R, Durr B, Marty C, Ohmura A, Wild M (2004) Radiative forcing – measured at Earth’s surface – corroborate the increasing greenhouse effect. Geophys Res Lett 31:L03202. doi:10.1029/2003gl018765CrossRefGoogle Scholar
  12. 12.
    Pinker RT, Zhang B, Dutton EG (2005) Do satellites detect trends in surface solar radiation? Science 308:850–854. doi:10.1126/science.1103159CrossRefGoogle Scholar
  13. 13.
    Hatzianastassiou N, Matsoukas C, Fotiadi A, Pavlakis KG, Drakakis E, Hatzidimitriou D, Vardavas I (2005) Global distribution of Earth’s surface shortwave radiation budget. Atmos Chem Phys 5:2847–2867CrossRefGoogle Scholar
  14. 14.
    Hinkelman LM, Stackhouse PW, Wielicki BA, Zhang TP, Wilson SR (2009) Surface insolation trends from satellite and ground measurements: comparisons and challenges. J Geophys Res Atmos 114:D00d20. doi:10.1029/2008jd011004CrossRefGoogle Scholar
  15. 15.
    Evan AT, Heidinger AK, Vimont DJ (2007) Arguments against a physical long-term trend in global ISCCP cloud amounts. Geophys Res Lett 34:L04701. doi:10.1029/2006gl028083CrossRefGoogle Scholar
  16. 16.
    Makowski K, Jaeger EB, Chiacchio M, Wild M, Ewen T, Ohmura A (2009) On the relationship between diurnal temperature range and surface solar radiation in Europe. J Geophys Res Atmos 114:D00d07. doi:10.1029/2008jd011104CrossRefGoogle Scholar
  17. 17.
    Sanchez-Lorenzo A, Brunetti M, Calbo J, Martin-Vide J (2007) Recent spatial and temporal variability and trends of sunshine duration over the Iberian Peninsula from a homogenized data set. J Geophys Res Atmos 112:D20115. doi:10.1029/2007jd008677CrossRefGoogle Scholar
  18. 18.
    Sanchez-Lorenzo A, Calbo J, Martin-Vide J (2008) Spatial and temporal trends in sunshine duration over Western Europe (1938–2004). J Climate 21:6089–6098. doi:10.1175/2008jcli2442.1CrossRefGoogle Scholar
  19. 19.
    Roderick ML, Farquhar GD (2002) The cause of decreased pan evaporation over the past 50 years. Science 298:1410–1411Google Scholar
  20. 20.
    Ohmura A, Lang H (1989) Secular variations of global radiation in Europe. A. Deepak, Lille, pp 98–301Google Scholar
  21. 21.
    Russak V (1990) Trends of solar radiation, cloudiness and atmospheric transparency during recent decades in Estonia. Tellus 42B:206–210Google Scholar
  22. 22.
    Dutton EG, Stone RS, Nelson DW, Mendonca BG (1991) Recent interannual variations in solar-radiation, cloudiness, and surface-temperature at the south-pole. J Climate 4:848–858CrossRefGoogle Scholar
  23. 23.
    Stanhill G, Moreshet S (1992) Global radiation climate changes – the world network. Clim Change 21:57–75CrossRefGoogle Scholar
  24. 24.
    Stanhill G, Moreshet S (1994) Global radiation climate-change at 7 sites remote from surface sources of pollution. Clim Change 26:89–103CrossRefGoogle Scholar
  25. 25.
    Liepert BG, Fabian P, Grassl H (1994) Solar radiation in Germany – observed trends and assessment of their causes; Part I: regional approach. Beitr Phys Atmos 67:15–29Google Scholar
  26. 26.
    Abakumova GM, Feigelson EM, Russak V, Stadnik VV (1996) Evaluation of long-term changes in radiation, cloudiness, and surface temperature on the territory of the former soviet union. J Climate 9:1319–1327CrossRefGoogle Scholar
  27. 27.
    Stanhill G, Cohen S (2001) Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric Forest Meteorol 107:255–278CrossRefGoogle Scholar
  28. 28.
    Wild M (2009) Global dimming and brightening: a review. J Geophys Res Atmos 114:D00d16. doi:10.1029/2008jd011470CrossRefGoogle Scholar
  29. 29.
    Liepert BG (2002) Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990. Geophys Res Lett 29:1421. doi:10.1029/2002gl014910CrossRefGoogle Scholar
  30. 30.
    Wild M, Gilgen H, Roesch A, Ohmura A, Long CN, Dutton EG, Forgan B, Kallis A, Russak V, Tsvetkov A (2005) From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science 308:847–850. doi:10.1126/science.1103215CrossRefGoogle Scholar
  31. 31.
    Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci USA 102:5326–5333. doi:10.1073/pnas.0500656102CrossRefGoogle Scholar
  32. 32.
    Kumari BP, Londhe AL, Daniel S, Jadhav DB (2007) Observational evidence of solar dimming: offsetting surface warming over India. Geophys Res Lett 34:L21810. doi:10.1029/2007gl031133CrossRefGoogle Scholar
  33. 33.
    Norris JR, Wild M (2007) Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar “dimming” and solar “brightening”. J Geophys Res Atmos 112:D08214. doi:10.1029/2006jd007794CrossRefGoogle Scholar
  34. 34.
    Norris JR, Wild M (2009) Trends in aerosol radiative effects over China and Japan inferred from observed cloud cover, solar “dimming,” and solar “brightening”. J Geophys Res Atmos 114:D00d15. doi:10.1029/2008jd011378CrossRefGoogle Scholar
  35. 35.
    Streets DG, Wu Y, Chin M (2006) Two-decadal aerosol trends as a likely explanation of the global dimming/brightening transition. Geophys Res Lett 33:L15806. doi:10.1029/2006gl026471CrossRefGoogle Scholar
  36. 36.
    Streets DG, Yan F, Chin M, Diehl T, Mahowald N, Schultz M, Wild M, Wu Y, Yu C (2009) Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980–2006. J Geophys Res Atmos 114:D00d18. doi:10.1029/2008jd011624CrossRefGoogle Scholar
  37. 37.
    Mishchenko MI, Geogdzhayev IV, Rossow WB, Cairns B, Carlson BE, Lacis AA, Liu L, Travis LD (2007) Long-term satellite record reveals likely recent aerosol trend. Science 315:1543–1543. doi:10.1126/science.1136709CrossRefGoogle Scholar
  38. 38.
    Russak V (2009) Changes in solar radiation and their influence on temperature trend in Estonia (1955–2007). J Geophys Res Atmos 114:D00d01. doi:10.1029/2008jd010613CrossRefGoogle Scholar
  39. 39.
    Ohvril H, Teral H, Neiman L, Kannel M, Uustare M, Tee M, Russak V, Okulov O, Joeveer A, Kallis A, Ohvril T, Terez EI, Terez GA, Gushchin GK, Abakumova GM, Gorbarenko EV, Tsvetkov AV, Laulainen N (2009) Global dimming and brightening versus atmospheric column transparency, Europe, 1906–2007. J Geophys Res Atmos 114:D00d12. doi:10.1029/2008jd010644CrossRefGoogle Scholar
  40. 40.
    Liley JB (2009) New Zealand dimming and brightening. J Geophys Res Atmos 114:D00d10. doi:10.1029/2008jd011401CrossRefGoogle Scholar
  41. 41.
    Long CN, Dutton EG, Augustine JA, Wiscombe W, Wild M, McFarlane SA, Flynn CJ (2009) Significant decadal brightening of downwelling shortwave in the continental United States. J Geophys Res Atmos 114:D00d06. doi:10.1029/2008jd011263CrossRefGoogle Scholar
  42. 42.
    Wild M, Ohmura A, Makowski K (2007) Impact of global dimming and brightening on global warming. Geophys Res Lett 34:L04702. doi:10.1029/2006gl028031CrossRefGoogle Scholar
  43. 43.
    Wild M, Truessel B, Ohmura A, Long CN, Konig-Langlo G, Dutton EG, Tsvetkov A (2009) Global dimming and brightening: an update beyond 2000. J Geophys Res Atmos 114:D00d13. doi:10.1029/2008jd011382CrossRefGoogle Scholar
  44. 44.
    Loeb NG, Wielicki BA, Rose FG, Doelling DR (2007) Variability in global top-of-atmosphere shortwave radiation between 2000 and 2005. Geophys Res Lett 34:L03704. doi:10.1029/2006gl028196CrossRefGoogle Scholar
  45. 45.
    Ohmura A (2009) Observed decadal variations in surface solar radiation and their causes. J Geophys Res Atmos 114:D00d05. doi:10.1029/2008jd011290CrossRefGoogle Scholar
  46. 46.
    McConnell JR, Edwards R, Kok GL, Flanner MG, Zender CS, Saltzman ES, Banta JR, Pasteris DR, Carter MM, Kahl JDW (2007) 20th-century industrial black carbon emissions altered arctic climate forcing. Science 317:1381–1384. doi:10.1126/science.1144856CrossRefGoogle Scholar
  47. 47.
    Wild M, Ohmura A (2004) BSRN longwave downward radiation measurements combined with GCMs show promise for greenhouse detection studies. GEWEX News 14:9–10Google Scholar
  48. 48.
    Wild M, Grieser J, Schaer C (2008) Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land-based hydrological cycle. Geophys Res Lett 35:L17706. doi:10.1029/2008gl034842CrossRefGoogle Scholar
  49. 49.
    Wild M, Ohmura A, Cubasch U (1997) GCM-simulated surface energy fluxes in climate change experiments. J Climate 10:3093–3110CrossRefGoogle Scholar
  50. 50.
    Ruckstuhl C, Philipona R, Behrens K, Coen MC, Durr B, Heimo A, Matzler C, Nyeki S, Ohmura A, Vuilleumier L, Weller M, Wehrli C, Zelenka A (2008) Aerosol and cloud effects on solar brightening and the recent rapid warming. Geophys Res Lett 35:L12708. doi:10.1029/2008gl034228CrossRefGoogle Scholar
  51. 51.
    Philipona R, Behrens K, Ruckstuhl C (2009) How declining aerosols and rising greenhouse gases forced rapid warming in Europe since the 1980s. Geophys Res Lett 36:L02806. doi:10.1029/2008gl036350CrossRefGoogle Scholar
  52. 52.
    Wild M (2009) How well do IPCC-AR4/CMIP3 climate models simulate global dimming/brightening and twentieth-century daytime and nighttime warming? J Geophys Res Atmos 114:D00d11. doi:10.1029/2008jd011372CrossRefGoogle Scholar
  53. 53.
    Wild M, Schmucki E (2010) Assessment of global dimming and brightening in IPCC-AR4/CMIP3 models and ERA40. Clim Dynam. doi:10.1007/s00382-010-0939-3Google Scholar
  54. 54.
    Ruckstuhl C, Norris JR (2009) How do aerosol histories affect solar “dimming” and “brightening” over Europe?: IPCC-AR4 models versus observations. J Geophys Res Atmos 114:D00d04. doi:10.1029/2008jd011066CrossRefGoogle Scholar
  55. 55.
    Wild M, Ohmura A, Gilgen H, Rosenfeld D (2004) On the consistency of trends in radiation and temperature records and implications for the global hydrological cycle. Geophys Res Lett 31:L11201. doi:10.1029/2003gl019188CrossRefGoogle Scholar
  56. 56.
    Wild M, Liepert B (2010) The Earth radiation balance as driver of the global hydrological cycle. Environ Res Lett 5:Artn 025003. doi:10.1088/1748-9326/5/2/025003CrossRefGoogle Scholar
  57. 57.
    Robock A, Li HB (2006) Solar dimming and CO2 effects on soil moisture trends. Geophys Res Lett 33:L20708. doi:10.1029/2006gl027585CrossRefGoogle Scholar
  58. 58.
    Ohmura A, Bauder A, Muller H, Kappenberger G (2007) Long-term change of mass balance and the role of radiation. Ann Glaciol 46:367–374CrossRefGoogle Scholar
  59. 59.
    Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–U87. doi:10.1038/Nature07949CrossRefGoogle Scholar
  60. 60.
    Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/Joc.1181CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute for Atmospheric and Climate ScienceETH ZurichZurichSwitzerland