Skip to main content

Crop Radiation Capture and Use Efficiency

  • Reference work entry
Book cover Encyclopedia of Sustainability Science and Technology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C3:

The C3 pathway of photosynthesis, found in most plant species, for example, rice, potato, and wheat.

C4:

The C4 pathway of photosynthesis, found in some tropical species, for example, maize, sugarcane, sorghum.

PAR:

Photosynthetically active radiation. Solar radiation in the wavelength region 400–700 nm.

RUE:

Radiation use efficiency , the ratio of biomass produced per unit radiation intercepted.

Bibliography

Primary Literature

  1. Sheehy JE, Mitchell PL, Hardy B (2007) Charting pathways to C4 rice. International Rice Research Institute, Los Banos

    Google Scholar 

  2. Cassman K (1994) Breaking the yield barrier. In: Proceedings of a workshop on rice yield potential in favourable environments, International Rice Research Institute, Los Banos

    Google Scholar 

  3. Reynolds M, Foulkes MJ, Slafer GA, Berry P, Parry MAJ, Snape JW, Angus WJ (2009) Raising yield potential in wheat. J Exp Bot 60:1899–1918

    Article  CAS  Google Scholar 

  4. Acreche MM, Briceno-Felix G, Sanchez JAM, Slafer GA (2009) Radiation interception and use efficiency as affected by breeding in Mediterranean wheat. Field Crops Res 110:91–97

    Article  Google Scholar 

  5. Sinclair TR, Muchow RC (1999) Radiation use efficiency. Adv Agron 65:215–265

    Article  Google Scholar 

  6. Watson DJ (1952) The physiological basis of variation in yield. In: Norman AG (ed) Advances in agronomy. Academic, New York

    Google Scholar 

  7. DeWit CT (1959) Potential photosynthesis of crop surfaces. Neth J Agric Sci 7:141–149

    CAS  Google Scholar 

  8. Loomis RS, Williams WA (1963) Maximum crop productivity: an estimate. Crop Sci 3:67–72

    Article  Google Scholar 

  9. Hirose T (2005) Development of the Monsi-Saeki theory on canopy structure and function. Ann Bot 95:483–494

    Article  CAS  Google Scholar 

  10. Monteith JL (1977) Climate and efficiency of crop production in Britain. Philos Trans R Soc Lond B Biol Sci 281:277–294

    Article  Google Scholar 

  11. Gallagher JN, Biscoe PV (1978) Radiation absorption, growth and yield of cereals. J Agric Sci 91:47–60

    Article  Google Scholar 

  12. Evans LT (1993) Crop evolution, adaptation and yield. Cambridge University Press, Cambridge

    Google Scholar 

  13. Mitchell PL, Sheehy JE, Woodward FI (1998) Potential yields and the efficiency of radiation use in rice. In: IRRI discussion paper series No. 32, International Rice Research Institute, Manila

    Google Scholar 

  14. Garcia R, Kanemasu ET, Blad BL, Bauer A, Hatfield JL, Major DJ, Reginato RJ, Hubbard KG (1988) Interception and use efficiency of light in winter-wheat under different nitrogen regimes. Agric For Meteorol 44:175–186

    Article  Google Scholar 

  15. Hanan NP, Prince SD, Begue A (1995) Estimation of absorbed photosynthetically active radiation and vegetation net production efficiency using satellite data. Agric For Meteorol 76:259–276

    Article  Google Scholar 

  16. Marshall B, Willey RW (1983) Radiation interception and growth in an intercrop of pearl-millet groundnut. Field Crops Res 7:141–160

    Article  Google Scholar 

  17. Penningdevries FWT, Brunstin A, Vanlaar HH (1974) Products, requirements and efficiency of biosynthesis - a quantitative approach. J Theor Biol 45:339–377

    Article  CAS  Google Scholar 

  18. Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    Article  CAS  Google Scholar 

  19. Duvick DN (2005) Genetic progress in yield of united states maize (Zea mays L.). Maydica 50:193–202

    Google Scholar 

  20. Murchie EH, Hubbart S, Chen YZ, Peng SB, Horton P (2002) Acclimation of rice photosynthesis to irradiance under field conditions. Plant Physiol 130:1999–2010

    Article  CAS  Google Scholar 

  21. Sinclair TR, Sheehy JE (1999) Erect leaves and photosynthesis in rice. Science 283:1456–1457

    Article  CAS  Google Scholar 

  22. Duncan WG (1971) Leaf angles, leaf area, and canopy photosynthesis. Crop Sci 11:482–485

    Article  Google Scholar 

  23. Reynolds MP, van Ginkel M, Ribaut JM (2000) Avenues for genetic modification of radiation use efficiency in wheat. J Exp Bot 51:459–473

    Article  CAS  Google Scholar 

  24. Fischer RA, Rees D, Sayre KD, Lu ZM, Condon AG, Saavedra AL (1998) Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Sci 38:1467–1475

    Article  Google Scholar 

  25. Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330

    Article  CAS  Google Scholar 

  26. Murchie EH, Horton P (1997) Acclimation of photosynthesis to irradiance and spectral quality in British plant species: Chlorophyll content, photosynthetic capacity and habitat preference. Plant Cell Environ 20:438–448

    Article  Google Scholar 

  27. Murchie EH, Yang JC, Hubbart S, Horton P, Peng SB (2002) Are there associations between grain-filling rate and photosynthesis in the flag leaves of field-grown rice? J Exp Bot 53:2217–2224

    Article  CAS  Google Scholar 

  28. Ackerly DD (1992) Light, leaf age, and leaf nitrogen concentration in a tropical vine. Oecologia 89:596–600

    Google Scholar 

  29. Morinaka Y, Sakamoto T, Inukai Y, Agetsuma M, Kitano H, Ashikari M, Matsuoka M (2006) Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol 141:924–931

    Article  CAS  Google Scholar 

  30. Boccalandro HE, Ploschuk EL, Yanovsky MJ, Sanchez RA, Gatz C, Casal JJ (2003) Increased phytochrome B alleviates density effects on tuber yield of field potato crops. Plant Physiol 133:1539–1546

    Article  CAS  Google Scholar 

  31. Fleming AJ (2005) The control of leaf development. New Phytol 166:9–20

    Article  CAS  Google Scholar 

  32. Ong CK, Monteith JL (1992) Canopy establishment: light capture and loss by crop canopies. In: Baker NR, Thomas H (eds) Crop photosynthesis: spatial and temporal determinants. Elsevier, Amsterdam, pp 1–9

    Google Scholar 

  33. Watanabe T, Hanan JS, Room PM, Hasegawa T, Nakagawa H, Takahashi W (2005) Rice morphogenesis and plant architecture: Measurement, specification and the reconstruction of structural development by 3D architectural modelling. Ann Bot 95:1131–1143

    Article  Google Scholar 

  34. Pyke KA, Leech RM (1987) The control of chloroplast number in wheat mesophyll-cells. Planta 170:416–420

    Article  Google Scholar 

  35. Hay R, Porter J (2006) The physiology of crop yield. Blackwell, Oxford

    Google Scholar 

  36. Zhu X-G, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159

    Article  CAS  Google Scholar 

  37. Nishio JN (2000) Why are higher plants green? Evolution of the higher plant photosynthetic pigment complement. Plant Cell Environ 23:539–548

    Article  CAS  Google Scholar 

  38. Murchie EH, Chen YZ, Hubbart S, Peng SB, Horton P (1999) Interactions between senescence and leaf orientation determine in situ patterns of photosynthesis and photoinhibition in field-grown rice. Plant Physiol 119:553–563

    Article  CAS  Google Scholar 

  39. Amthor JS (2000) The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later. Ann Bot 86:1–20

    Article  CAS  Google Scholar 

  40. Nunes-Nesi A, Carrari F, Lytovchenko A, Smith AMO, Ehlers Loureiro M, Ratcliffe RG, Sweetlove LJ, Fernie AR (2005) Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants. Plant Physiol 137:611–622

    Article  CAS  Google Scholar 

  41. Beadle CL, Long SP (1985) Photosynthesis: is it limiting to biomass production. Biomass 8:119–168

    Article  CAS  Google Scholar 

  42. Araus JL, Brown HR, Febrero A, Bort J, Serret MD (1993) Ear photosynthesis, carbon isotope discrimination and the contribution of respiratory CO2 to differences in grain mass in durum-wheat. Plant Cell Environ 16:383–392

    Article  CAS  Google Scholar 

  43. Tambussi EA, Bort J, Araus JL (2007) Water use efficiency in C-3 cereals under Mediterranean conditions: a review of physiological aspects. Ann Appl Biol 150:307–321

    Article  Google Scholar 

  44. Diepenbrock W (2000) Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res 67:35–49

    Article  Google Scholar 

  45. Watanabe N, Evans JR, Chow WS (1994) Changes in the photosynthetic properties of Australian wheat cultivars over the last century. Aust J Plant Physiol 21:169–183

    Article  CAS  Google Scholar 

  46. Gutierrez-Rodriguez M, Reynolds MP, Larque-Saavedra A (2000) Photosynthesis of wheat in a warm, irrigated environment - II. Traits associated with genetic gains in yield. Field Crops Res 66:51–62

    Article  Google Scholar 

  47. Peng S, Laza RC, Visperas RM, Sanico AL, Cassman KG, Khush GS (2000) Grain yield of rice cultivars and lines developed in the Philippines since 1966. Crop Sci 40:307–314

    Article  Google Scholar 

  48. Hubbart S, Peng S, Horton P, Chen Y, Murchie EH (2007) Trends in leaf photosynthesis in historical rice varieties developed in the Philippines since 1966. J Exp Bot 58:3429–3438

    Article  CAS  Google Scholar 

  49. Murchie EH, Pinto M, Horton P (2009) Agriculture and the new challenges for photosynthesis research. New Phytol 181:532–552

    Article  CAS  Google Scholar 

  50. Horton P (2000) Prospects for crop improvement through the genetic manipulation of photosynthesis: morphological and biochemical aspects of light capture. J Exp Bot 51:475–485

    Article  CAS  Google Scholar 

  51. Quick WP, Fichtner K, Schulze ED, Wendler R, Leegood RC, Mooney H, Rodermel SR, Bogorad L, Stitt M (1992) Decreased ribulose-1, 5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with antisense rbcS. 4. Impact on photosynthesis in conditions of altered nitrogen supply. Planta 188:522–531

    Article  CAS  Google Scholar 

  52. Parry MAJ, Andralojc PJ, Mitchell RAC, Madgwick PJ, Keys AJ (2003) Manipulation of Rubisco: the amount, activity, function and regulation. J Exp Bot 54:1321–1333

    Article  CAS  Google Scholar 

  53. Galmes J, Flexas J, Keys AJ, Cifre J, Mitchell RAC, Madgwick PJ, Haslam RP, Medrano H, Parry MAJ (2005) Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves. Plant Cell Environ 28:571–579

    Article  CAS  Google Scholar 

  54. Zhu G, Spreitzer RJ (1996) Directed mutagenesis of chloroplast ribulose-1, 5-bisphosphate carboxylase/oxygenase. Loop 6 substitutions complement for structural stability but decrease catalytic efficiency. J Biol Chem 271:18494–18498

    Article  CAS  Google Scholar 

  55. Raines CA (2006) Transgenic approaches to manipulate the environmental responses of the C-3 carbon fixation cycle. Plant Cell Environ 29:331–339

    Article  CAS  Google Scholar 

  56. Medrano H, Keys AJ, Lawlor DW, Parry MAJ, Azconbieto J, Delgado E (1995) Improving plant-production by selection for survival at low CO2 concentrations. J Exp Bot 46:1389–1396

    Article  CAS  Google Scholar 

  57. Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch HJ, Rosenkranz R, Stabler N, Schonfeld B, Kreuzaler F, Peterhansel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25:593–599

    Article  CAS  Google Scholar 

  58. Hibberd JM, Sheehy JE, Langdale JA (2008) Using C-4 photosynthesis to increase the yield of rice - rationale and feasibility. Curr Opin Plant Biol 11:228–231

    Article  CAS  Google Scholar 

  59. Matsuoka M, Furbank RT, Fukayama H, Miyao M (2001) Molecular engineering of C4 photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 52:297–314

    Article  CAS  Google Scholar 

  60. Voznesenskaya EV, Franceschi VR, Kiirats O, Freitag H, Edwards GE (2001) Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 414:543–546

    Article  CAS  Google Scholar 

  61. Sage R, Sage T (2007) Learning from nature to develop strategies for the directed evolution of C4 rice. In: Sheehy JE, Mitchell PL, Hardy B (eds) Charting new pathways to C4 rice. International Rice Research Institute, Los Banos

    Google Scholar 

  62. Zhu X-G, de Sturler E, Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol 145:513–526

    Article  CAS  Google Scholar 

  63. Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684

    Article  CAS  Google Scholar 

  64. Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–U522

    Article  CAS  Google Scholar 

  65. Frenkel M, Bellafiore S, Rochaix JD, Jansson S (2007) Hierarchy amongst photosynthetic acclimation responses for plant fitness. Physiol Plant 129:455–459

    Article  CAS  Google Scholar 

  66. Zhu XG, Ort DR, Whitmarsh J, Long SP (2004) The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: a theoretical analysis. J Exp Bot 55:1167–1175

    Article  CAS  Google Scholar 

  67. Athanasiou K, Dyson BC, Webster RE, Johnson GN (2010) Dynamic acclimation of photosynthesis increases plant fitness in changing environments. Plant Physiol 152:366–373

    Article  CAS  Google Scholar 

  68. Smith AM, Stitt M (2007) Coordination of carbon supply and plant growth. Plant Cell Environ 30:1126–1149

    Article  CAS  Google Scholar 

  69. Cross JM, von Korff M, Altmann T, Bartzetko L, Sulpice R, Gibon Y, Palacios N, Stitt M (2006) Variation of enzyme activities and metabolite levels in 24 arabidopsis accessions growing in carbon-limited conditions. Plant Physiol 142:1574–1588

    Article  CAS  Google Scholar 

  70. Achard P, Renou JP, Berthome R, Harberd NP, Genschik P (2008) Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol 18:656–660

    Article  CAS  Google Scholar 

  71. Berry PM, Spink JH, Foulkes MJ, Wade A (2003) Quantifying the contributions and losses of dry matter from non-surviving shoots in four cultivars of winter wheat. Field Crops Res 80:111–121

    Article  Google Scholar 

  72. Setter TL, Conocono EA, Egdane JA, Kropff MJ (1995) Possibility of increasing yield potential of rice by reducing panicle height in the canopy. 1. Effects of panicles on light interception and canopy photosynthesis. Aust J Plant Physiol 22:441–451

    Google Scholar 

  73. Spielmeyer W, Richards RA (2004) Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S. Theor Appl Genet 109:1303–1310

    Article  CAS  Google Scholar 

  74. Shearman VJ, Sylvester-Bradley R, Scott RK, Foulkes MJ (2005) Physiological processes associated with wheat yield progress in the UK. Crop Sci 45:175–185

    Google Scholar 

  75. Blum A (1998) Improving wheat grain filling under stress by stem reserve mobilisation (Reprinted from Wheat: Prospects for global improvement, 1998). Euphytica 100:77–83

    Article  Google Scholar 

  76. Foulkes MJ, Sylvester-Bradley R, Weightman R, Snape JW (2007) Identifying physiological traits associated with improved drought resistance in winter wheat. Field Crops Res 103:11–24

    Article  Google Scholar 

  77. Yang J, Zhang J, Liu L, Wang Z, Zhu Q (2002) Carbon remobilization and grain filling in Japonica/Indica hybrid rice subjected to postanthesis water deficits. Agron J 94:102–109

    Article  Google Scholar 

  78. Miralles DJ, Slafer GA (2007) Sink limitations to yield in wheat: how could it be reduced? J Agric Sci 145:139–149

    Article  Google Scholar 

  79. Slafer GA, Calderini DF, Miralles DJ, Dreccer MF (1994) Preanthesis shading effects on the number of grains of 3 bread wheat cultivars of different potential number of grains. Field Crops Res 36:31–39

    Article  Google Scholar 

  80. Acreche MM, Slafer GA (2009) Grain weight, radiation interception and use efficiency as affected by sink-strength in Mediterranean wheats released from 1940 to 2005. Field Crops Res 110:98–105

    Article  Google Scholar 

  81. Reynolds M, Dreccer F, Trethowan R (2007) Drought-adaptive traits derived from wheat wild relatives and landraces. J Exp Bot 58:177–186

    Article  CAS  Google Scholar 

  82. Miralles DJ, Slafer GA (1995) Yield, biomass and yield components in dwarf, semi-dwarf and tall isogenic lines of spring wheat under recommended and late sowing dates. Plant Breed 114:392–396

    Article  Google Scholar 

  83. Brenner ED, Stahlberg R, Mancuso S, Vivanco J, Baluska F, Van Volkenburgh E (2006) Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci 11:413–419

    Article  CAS  Google Scholar 

  84. Davies WJ, Wilkinson S, Loveys B (2002) Stomatal control by chemical signalling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytol 153:449–460

    Article  CAS  Google Scholar 

  85. Boyer JS, McLaughlin JE (2007) Functional reversion to identify controlling genes in multigenic responses: analysis of floral abortion. J Exp Bot 58:267–277

    Article  CAS  Google Scholar 

  86. Ghiglione HO, Gonzalez FG, Serrago R, Maldonado SB, Chilcott C, Cura JA, Miralles DJ, Zhu T, Casal JJ (2008) Autophagy regulated by day length determines the number of fertile florets in wheat. Plant J 55:1010–1024

    Article  CAS  Google Scholar 

  87. Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745

    Article  CAS  Google Scholar 

  88. Sinclair TR, Horie T (1989) Leaf nitrogen, photosynthesis, and crop radiation use efficiency - a review. Crop Sci 29:90–98

    Article  Google Scholar 

  89. Hammer GL, Wright GC (1994) A theoretical-analysis of nitrogen and radiation effects on radiation use efficiency in peanut. Aust J Agric Res 45:575–589

    Article  Google Scholar 

  90. Loomis RS, Amthor JS (1996) LImits to yield revisited. In: Reynolds M, Rajaram S, McNab A (eds) Increasing yield potential in wheat: breaking the barriers. CIMMYT, Mexico, pp 76–89

    Google Scholar 

  91. Inthapan P, Fukai S (1988) Growth and yield of rice cultivars under sprinkler irrigation in southeastern Queensland. 2. Comparison with maize and grain-sorghum under wet and dry conditions. Aust J Exp Agric 28:243–248

    Article  Google Scholar 

  92. Zhang YB, Tang QY, Zou YB, Li DQ, Qin JQ, Yang SH, Chen LJ, Xia B, Peng SB (2009) Yield potential and radiation use efficiency of “super” hybrid rice grown under subtropical conditions. Field Crops Res 114:91–98

    Article  Google Scholar 

  93. Rochette P, Desjardins RL, Pattey E, Lessard R (1995) Crop net carbon-dioxide exchange-rate and radiation use efficiency in soybean. Agron J 87:22–28

    Article  Google Scholar 

  94. Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Change Biol 14:2000–2014

    Article  Google Scholar 

  95. Dohleman FG, Heaton EA, Leakey ADB, Long SP (2009) Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of Miscanthus relative to switchgrass? Plant Cell Environ 32:1525–1537

    Article  CAS  Google Scholar 

  96. Takai T, Fukuta Y, Shiraiwa T, Horie T (2005) Time-related mapping of quantitative trait loci controlling grain-filling in rice (Oryza sativa L.). J Exp Bot 56:2107–2118

    Article  CAS  Google Scholar 

  97. Hall AJ, Connor DJ, Sadras VO (1995) Radiation-use efficiency of sunflower crops - effects of specific leaf nitrogen and ontogeny. Field Crops Res 41:65–77

    Article  Google Scholar 

  98. Sinclair TR, Shiraiwa T (1993) soybean radiation-use efficiency as influenced by nonuniform specific leaf nitrogen distribution and diffuse-radiation. Crop Sci 33:808–812

    Article  CAS  Google Scholar 

  99. Muchow RC, Sinclair TR (1994) Nitrogen response of leaf photosynthesis and canopy radiation use efficiency in field-grown maize and sorghum. Crop Sci 34:721–727

    Article  Google Scholar 

  100. Muchow RC (1989) Comparative productivity of maize, sorghum and pearl-millet in a semi-arid tropical environment. 2. Effect of water deficits. Field Crops Res 20:207–219

    Article  Google Scholar 

  101. Singh P, Rama YV (1989) Influence of water deficit on transpiration and radiation use efficiency of chickpea (Cicer-arietinum-l). Agric For Meteorol 48:317–330

    Article  Google Scholar 

  102. Sinclair TR, Muchow RC (1999) Occam’s Razor, radiation-use efficiency, and vapor pressure deficit. Field Crops Res 62:239–243

    Article  Google Scholar 

  103. IPCC (2007) Summary for policymakers. In: Climate change 2007: the physical science basis. A report of working group I of the 4th assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge/New York

    Google Scholar 

  104. Parry M, Rosenzweig C, Livermore M (2005) Climate change, and risk global food supply of hunger. Philos Trans R Soc B Biol Sci 360:2125–2138

    Article  Google Scholar 

  105. Peng SB, Huang JL, Sheehy JE, Laza RC, Visperas RM, Zhong XH, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA 101:9971–9975

    Article  CAS  Google Scholar 

  106. Drake BG, GonzalezMeler MA, Long SP (1997) More efficient plants: A consequence of rising atmospheric CO2? Annu Rev Plant Physiol Plant Mol Biol 48:609–639

    Article  CAS  Google Scholar 

  107. Long SP, Ainsworth EA, Leakey ADB, Morgan PB (2005) Global food insecurity. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields. Philos Trans R Soc B Biol Sci 360:2011–2020

    Article  Google Scholar 

  108. Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–371

    Article  Google Scholar 

  109. Amani I, Fischer RA, Reynolds MP (1996) Canopy temperature depression association with yield of irrigated spring wheat cultivars in a hot climate. J Agron Crop Sci 176:119–129

    Article  Google Scholar 

  110. Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610

    Article  CAS  Google Scholar 

  111. Reynolds MP, Delgado MI, Gutierrez-Rodriguez M, Larque-Saavedra A (2000) Photosynthesis of wheat in a warm, irrigated environment - I: Genetic diversity and crop productivity. Field Crops Res 66:37–50

    Article  Google Scholar 

  112. Barnabas B, Jager K, Feher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    CAS  Google Scholar 

Books and Reviews

  • Bolhar-Nordenkampf HR, Leegood RC, Long SP (eds) (1993) Photosynthesis and productivity in a changing environment: a field and laboratory manual. Chapman & Hall, London

    Google Scholar 

  • Laisk A, Nedbal L, Govindjee (eds) (2009) Photosynthesis in silico: understanding complexity from molecules to ecosystems. Springer, Dordrecht

    Google Scholar 

  • Lawlor DW (2000) Photosynthesis. Taylor & Francis, Boca Raton

    Google Scholar 

  • Reynolds MP, Rajaram S, McNab A (eds) (1996) Increasing yield potential in wheat: breaking the barriers. CIMMYT, Mexico

    Google Scholar 

  • Russell G, Marshal B, Jarvis PG (eds) (1990) Plant canopies, their structure growth and function. Cambridge University Press, Cambridge

    Google Scholar 

  • Sage RF, Monson RK (eds) (1999) C4 Plant biology. Academic, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Murchie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Murchie, E., Reynolds, M. (2012). Crop Radiation Capture and Use Efficiency. In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_171

Download citation

Publish with us

Policies and ethics