Encyclopedia of Global Archaeology

2014 Edition
| Editors: Claire Smith

Organic Residue Analysis in Archaeology

Reference work entry
DOI: https://doi.org/10.1007/978-1-4419-0465-2_334


Organic residues of substances that were used in the past can survive as visible amorphous residues or trapped in the porous of archaeological materials, such as ceramic matrix or plasters. The study of these residues has relied on the possibility of identifying markers or indicators of the different substances (biomarkers) that survive through time and different postdepositional environments (Evershed 1993, 2008a).

The study of these residues that can be performed with a number of analyses, instruments, and extraction methods has provided archaeologists with interesting data on different aspects of the ancient way of life.

Historical Background

As Evershed has recently shown, a major influence in the development of the field was the emergence of a new generation of analytical chemical methodologies in the middle of the twentieth century that enabled complex environmental materials to be studied in increasingly fine detail (Evershed 2008a). Nevertheless, it was the...

This is a preview of subscription content, log in to check access.


  1. Barba, L. 2007. Chemical residues in lime plastered archaeological floors. Geoarchaeology 22: 439-52.Google Scholar
  2. Barnard, H. & J.W. Eerkens. (ed.) 2007. Theory and practice of archaeological residue analysis (BAR International series 1650). Oxford: Archaeopress.Google Scholar
  3. Berstan, R., A.W. Stott, S. Minnitt, C. Bronk Ramsey, R.E.M. Hedges & R.P. Evershed. 2008. Direct dating of pottery from its organic residues: new precision using compound-specific carbon isotopes. Antiquity 82: 702-13.Google Scholar
  4. Brown, T. & K. Brown. 2011. Biomolecular archaeology: an introduction. Chichester: Wiley.Google Scholar
  5. Bull, I.D., M.M. Elhmmali, D.J. Roberts & R.P.Evershed. 2003. The application of steroid biomarkers to track the abandonment of a Roman water course at the Agora (Athens, Greece). Archaeometry 45: 149-61.Google Scholar
  6. Colombini, M.P. & F. Modugno. 2009. Organic mass spectrometry in art and archaeology. Chichester: Wiley.Google Scholar
  7. Condamin, J., F. Formenti, M.O. Metais, M. Michel & P. Bond. 1976. The application of gas chromatography to the tracing of oil in ancient amphorae. Archaeometry 18: 195-201.Google Scholar
  8. Evershed, R.P. 1993. Biomolecular archaeology and lipids. World Archaeology 25: 74-93.Google Scholar
  9. - 2008a. Organic residues in archaeology: the archaeological biomarker revolution. Archaeometry 50: 895-924.Google Scholar
  10. - 2008b. Experimental approaches to the interpretation of absorbed organic residues in archaeological ceramics. World Archaeology 40: 26-47.Google Scholar
  11. Garnier, N. 2007. Analyse de résidus organiques conservés dans des amphores: un état de la question, in M. Bonifay & J.C. Tréglia (ed.) Late Roman coarse wares, cooking wares and amphorae in the mediterranean. Archaeology and archaeometry. LRCW: 39-49 (BAR International series 16622). Oxford: Archaeopress.Google Scholar
  12. Garnier, N., C. Rolando, J.M. Hotje & C. Tokarski. 2009. Analysis of archaeological triacylglycerols by high resolution nanoESI, FT-ICR MS and IRMPD MS/MS: application to 5th century BC-4th century AD oil lamps from Olbia (Ukraine). Journal of Mass Spectrometry 284: 47-56.Google Scholar
  13. Guasch-Jané, M.R., M. Iberno Gómez, C. Andrés-Lacueva, O. Jáuregui & R.M. Lamuela-Raventós 2006. First evidence of white wine in ancient Egypt from Tutankhamen’s tomb. Journal of Archaeological Science 33: 1075-80.Google Scholar
  14. Hansson, M. & B. Foley. 2008. Ancient DNA fragments inside classical Greek amphoras reveal cargo of 2400-year-old shipwreck. Journal of Archaeological Science 35: 1169-76.Google Scholar
  15. Heron, C. & A.M. Pollard. 1988. The analysis of natural resinous materials from amphoras, in Science and Archaeology [Glasgow 1987]. Oxford: BAR.Google Scholar
  16. Loy, T.H. & E.J. Dixon. 1998. Blood residues on fluted points from Eastern Beringia. American Antiquity 63: 21-46.Google Scholar
  17. Mcgovern, P. 2010. Uncorking the past: the quest for wine, beer, and other alcoholic beverages. Berkeley: University of California PressGoogle Scholar
  18. McGovern, P.E, D.L. Glusker, R.A. Moreau, A. Nunez, C.W. Beck, E. Simpson, E.D. Butrym, L.J. Exner & E.C. Stout. 1999. Funerary feast fit for King Midas. Nature 402: 863-4.Google Scholar
  19. Middleton, W.D., L. Barba, A. Pecci, J.H Burton, A. Ortiz, L. Salvini & R. Rodriguez Suárez. 2010. The study of archaeological floors: methodological proposal for the analysis of anthropogenic residues by spot tests, ICP-OES, and GC-MS, Journal of Archaeological Method and Theory 17: 183-208.Google Scholar
  20. Mills, J.S. & R. White. 1987. The organic chemistry of museum objects. Oxford: Butterworth-Heinemann.Google Scholar
  21. Pecci, A., G. Giorgi, L. Salvini, & M.Á. Cau Ontiveros. 2013. Identifying wine markers in ceramics and plasters with gas chromatography-mass spectrometry. Experimental and archaeological materials, Journal of Archaeological Science 40: 109-115.Google Scholar
  22. Pecci, A., L. Salvini, E. Cirelli & A. Augenti. 2010. Residue analysis of some Late Roman amphorae coming from the port of Classe (Ravenna - Italy): relationship between form and function, in S. Menchelli, M. Pasquinucci & S. Santoro (ed.) LRCW3. Late Roman coarse wares, cooking wares and amphorae in the Mediterranean. Archaeology and archaeometry (BAR International series 2185): 617-22. Oxford: Archaeopress.Google Scholar
  23. Reber, E.A. & R.P. Evershed. 2004. How did Mississippians prepare maize? The application of compound-specific carbon isotope analysis to absorbed pottery residues from several Mississippi valley sites. Archaeometry 46: 19-33.Google Scholar
  24. Regert, M. 2011. Analytical strategies for discriminating archeological fatty substances from animal origin. Mass Spectrometry Reviews 30: 177-220.Google Scholar
  25. Regert, M., T. Devièse, A.S. Le Hô & A. Rougeulle. 2008. Reconstructing ancient Yemeni commercial routes during the Middle-Ages using structural characterisation of terpenoid resins. Archaeometry 50: 668-95.Google Scholar
  26. Stern, B., J. Connan, E. Blakelock, R. Jackman, R.A. Coningham & C. Heron. 2008. From Susa to Anuradhapura: reconstructing aspects of trade and exchange in bitumen - coated ceramic vessels between Iran and Sri Lanka from the third to the ninth centuries AD. Archaeometry 50: 409-28.Google Scholar
  27. van Bergen, P. F., I.D. Bull, P.R. Poulton & R.P. Evershed. 1997. Organic geochemical studies of soils from the Rothamsted classical experiments–I. Total lipid extracts, solvent insoluble residues and humic acids from Broadbalk Wilderness. Organic Geochemistry 26: 117–135.Google Scholar
  28. Webb, E.A., P.S. Henry & P.F. Healy. 2004. Detection of ancient maize in lowland Maya soils using stable carbon isotopes: evidence from Caracol, Belize. Journal of Archaeological Science 31: 1039-52.Google Scholar
  29. Wells, E.C. & J. E. Moreno Cortés. 2010. Chimie du sol et activités humaines anciennes: les exemples archéologiques du Mexique et d’Amérique centrale. Etude et Gestion des Sols 17 (1): 67-78.Google Scholar

Further Reading

  1. Ciliberto, E. & G. Spoto. 2000. Modern analytical methods in art and archaeology. New York: Wiley-Interscience.Google Scholar
  2. Pollard, M. & C. Heron. 2008. Archaeological chemistry. Cambridge: Royal Society of Chemistry.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Equip de Recerca Arqueològica i Arqueomètrica de la Universitat de Barcelona (ERAAUB), Departament de Prehistòria, Història Antiga i Arqueologia, Facultat de Geografia i HistòriaUniversitat de BarcelonaBarcelonaSpain