Skip to main content

Divalent Earth Alkaline Cations in Seawater

  • Reference work entry
Encyclopedia of Geobiology

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Divalent cations in seawater

Definition

The most abundant divalent earth alkaline cations in seawater are Mg2+, Ca2+, and Sr2+ are simply termed the “divalent cations.” These ions and their dynamic change play a major role for the modern oceans. On long geological time scales dynamic changes of divalent cation concentrations in the oceans influenced the evolution of live and the climate evolution in the past.

Divalent cations in modern ocean water

Magnesium

Magnesium is a chemical element with the symbol Mg, the atomic number 12, and an atomic mass of 24.31. Magnesium is the ninth most abundant element in the universe by mass. It constitutes about 2% of the Earth’s crust by mass, and it is the third most abundant element dissolved in seawater and it is the most abundant divalent cation followed by Ca and Sr in seawater (Brown et al., 1992). Mg ions are essential to all living cells, and is the 11th most abundant element by mass in the human body. In seawater (S= 35 psu), Mg...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Beck, J. W., Recy, J., Taylor, F., Edwards, R. L., and Cabioch, G., 1992. Abrupt changes in early Holocene tropical sea surface temperature derived from coral records. Nature, 385, 705–707.

    Article  Google Scholar 

  • Bernat, M., Church, T., and Allegre, C. J., 1972. Barium and strontium concentrations in Pacific and Mediterranean sea water profiles by direct isotope dilution mass spectrometry. Earth and Planetary Science Letters, 16(1), 75–80.

    Article  Google Scholar 

  • Brown, J., Colling, A., Park, D., Philips, J., Rotghery, D., and Wright, J., 1992. Seawater: its Composition, Properties, and Behaviour. Oxford: Pergamon Press.

    Google Scholar 

  • DeLaRocha, C. L., and DePaolo, D. J., 2000. Isotopic evidence for variations in the marine calcium cycle over the cenozoic. Science, 289, 1176–1178.

    Article  Google Scholar 

  • DeVilliers, S., and Nelson, B. K., 1999. Detection of low-temperature hydrothermal fluxes by seawater Mg and Ca anomalies. Science, 285, 721–723.

    Article  Google Scholar 

  • Fietzke, J., and Eisenhauer, A., 2006. Determination of temperature-dependent stable strontium isotope (88Sr/ 86Sr) fractionation via bracketing standard MC-ICP-MS. Geochemistry, Geophysics, Geosystems, 7(8), doi:10.1029/2006GC001243.

    Google Scholar 

  • Gussone, N., Eisenhauer, A., Heuser, A., Dietzel, M., Bock, B., Böhm, F., Spero, H., Lea, D. W., Bijma, J., and Nägler, T. F., 2003. Model for kinetic effects on calcium isotope fractionation (δ44Ca) in inorganic aragonite and cultured planktonic foraminifera. Geochimica et Cosmochimica Acta, 67(7), 1375–1382.

    Article  Google Scholar 

  • Hastings, D. W., Russell, A. D., and Emerson, S. R., 1998. Foraminferal magnesium in G. sacculifer as a paleotemperature proxy in the equatorial Atlantic and Carribean surface oceans. Paleoceanography, 13(2), 161–169.

    Article  Google Scholar 

  • Hippler, D., Eisenhauer, A., et al. 2006. “Tropical Atlantic SST history inferred from Ca isotope thermometry over the last 140ka.” Geochem Cosmochem Acta, 70, 90–100, doi:10.1016/j.gca.2005.07.022.

    Article  Google Scholar 

  • Holland, H. D., 1984. The Chemical Evolution of the Atmosphere and Oceans. Princeton: Princeton University Press.

    Google Scholar 

  • Kastner, M., 1999. Oceanic minerals: their origin, nature of their environment, and significance. Proceedings of the National Academy of Sciences of the United States of America, 96, 3380–3387.

    Article  Google Scholar 

  • Katz, A., 1973. The interaction of magnesium with calcite during crystal growth at 25–90°C and one atmosphere. Geochimica et Cosmochimica Acta, 37(6), 1563–1578, IN3, 1579–1586.

    Article  Google Scholar 

  • Kinsman, D. J. J., and Holland, H. D., 1969. The co-precipitation of cations with CaCO3. The co-precipitation of Sr2 + with aragonite between 16° and 96°C. Geochimica et Cosmochimica Acta, 33, 1–17.

    Article  Google Scholar 

  • Kisakürek, B., Eisenhauer, A., et al. 2008. Controls on shell Mg/Ca and Sr/Ca in cultured planktonic foraminiferan, Globigerinoides ruber (white). Earth and Planetary Science Letters, 273(3–4), 260–269.

    Article  Google Scholar 

  • Lea, D. W., 2003. Elemental and isotopic proxis of past ocean temperatures. In Holland, H. D., and Turekian K. K. (eds.), Treatise on Geochemistry, Oxford: Elsevier, Vol. 6, pp. 365–390.

    Google Scholar 

  • Lea, D. W., Mashiotta, T. A., and Spero, H. J., 1999. Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. Geochimica et Cosmochimica Acta, 63(16), 2369–2379.

    Article  Google Scholar 

  • Lea, D. W., Pak, D. K., and Spero, H. J., 2000. Climate impact of late quaternary equatorial pacific sea surface temperature variations. Science, 289, 1719–1724.

    Article  Google Scholar 

  • Linsley, B. K., Wellington, G. M., and Schrag, D. P., 2000. Decadal sea surface temperature variability in the subtropical South Pacific from 1726 to 1997 A.D. Science, 290, 1145–1148.

    Article  Google Scholar 

  • Mantua, J. N., Hare, S. R., Zhang, Y., Wallace, J. M., and Francids, R. C., 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. American Meteorological Society, 78(6), 1069–1079.

    Article  Google Scholar 

  • Mashiotta, T. M., Lea, D. W., and Spero, H. J., 1999. Glacial-interglacial changes in Subantarctic sea surface temperature and δ18O-water using foraminiferal Mg. Earth and Planetary Science Letters, 170, 417–432.

    Article  Google Scholar 

  • McKenzie, J. A., 1981. Holocene dolomitization of calcium carbonate sediments from the coastal sabkhas of Abu Dhabi, UAE: a stable isotope study. Journal of Geology, 89, 185–198.

    Article  Google Scholar 

  • Millero, F. J., 1995. Thermodynamics of the carbon dioxide system in the oceans. Geochimica et Cosmochimica Acta, 59(4), 661–677.

    Article  Google Scholar 

  • Mottl, M. J., and Holland, H. D., 1978. Chemical exchange during hydrothermal alteration of basalt by seawater-I. Experimental results for major and minor components of seawater. Geochimica et Cosmochimica Acta, 42(8), 1103–1115.

    Article  Google Scholar 

  • Mottl, M. J., and Wheat, C. G., 1993. Hydrothermal circulation through mid-ocean ridge flanks: Fluxes of heat and magnesium. Geochim Cosmochim Acta, 58, 2225–2237.

    Article  Google Scholar 

  • Nägler, T., Eisenhauer, A., Müller, A., Hemleben, C., and Kramers, J., 2000. The δ44Ca-isotopes: new powerful tool for reconstruction of past sea surface temperatures. Geochemistry, Geophysics, Geosystems, 1(2000GC000091).

    Google Scholar 

  • Nürnberg, D., Bijma, J., et al. 1996. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. Geochim Cosmochim Acta, 60, 803–814.

    Article  Google Scholar 

  • Nürnberg, D., Müller, A., and Schneider, R. R., 2000. Paleo-sea surface temperature calculations in the equatorial east Atlantic from Mg/Ca ratios in planktic foraminifera: a comparison to sea surface temperature estimates from Uk'37, oxygen isotopes, and foraminiferal transfer function. Paleooceanography, 15(1), 124–134.

    Article  Google Scholar 

  • Savin, S. M., and Douglas, R. G., 1973. Stable isotope and magnesium geochemistry of recent planktonic foraminfera from South-Pacific. Geological Society of America Bulletin, 84(7), 2327–2342.

    Article  Google Scholar 

  • Wilkinson, B. H., and Algeo, T. J., 1989. Sedimentary carbonate record of calcium-magnesium cycling. American Journal of Science, 289, 1158–1194.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Eisenhauer, A. (2011). Divalent Earth Alkaline Cations in Seawater. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_75

Download citation

Publish with us

Policies and ethics