Skip to main content

Diatoms

  • Reference work entry
Encyclopedia of Geobiology

Synonyms

Bacillariophyta

Definition

Diatoms (Chromalveolates supergroup, photosynthetic Stramenopiles, Bacillariophyta) are unicellular or colonial eukaryotic algae with unique cell walls composed of amorphous silica and consisting of two parts.

The diatoms (Bacillariophyta) represent an extremely diverse and successful lineage of photosynthetic Stramenopiles (Chromalveolates) with cell walls composed of amorphous silica and consisting of two parts, termed frustules , as their most striking feature. The diatoms are of unicellular organization, but some form colonies. The diatom plastids are derived from red algal secondary symbiosis and are golden brown due to the high concentration of the carotenoid fucoxanthin. Diatoms are exceedingly abundant and thought to be the most important group of eukaryotic phytoplankton, responsible for approximately 40% of marine primary productivity (Falkowski et al., 1998). Their high abundance coupled with the resistance of diatom frustules to...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Arp, G., Bissett, A., Brinkmann, N., Cousin, S., De Beer, D., Friedl, T., Mohr, K. I., Neu, T. R., Reimer, A., Shiraishi, F., Stackebrandt, E., and Zippel, B., 2010. Tufa-forming biofilms of German karstwater streams: microorganisms, exopolymers, hydrochemistry and calcification. London: Geological Society. Special publications, Vol. 336, pp. 83–118.

    Google Scholar 

  • Awramik, S. M., and Vanyo, J. P., 1986. Heliotropism in modern Stromatolites. Science, 231, 1279–1281.

    Article  Google Scholar 

  • Capone, D. G., Zehr, J. P., Paerl, H., Bergman, B., and Carpenter, E. J., 1997. Trichodesmium: a globally significant cyanobacterium. Science, 276, 1221–1229.

    Article  Google Scholar 

  • Carpenter, E. J., and Romans, K., 1991. Major role of the cyanobacterium Trichodesmium in nutrient cycling in North Atlantic Ocean. Science, 254, 1356–1358.

    Article  Google Scholar 

  • Falkowski, P. G., and Raven, J. A., 1997. Aquatic photosynthesis. Malden: Blackwell Science.

    Google Scholar 

  • Falkowski, P. G., Barber, R. T., and Smetacek, V., 1998. Biogeochemical controls and feedbacks on ocean primary production. Science, 281, 200–206.

    Article  Google Scholar 

  • Fogg, G. E., 1982. Marine plankton. In Carr, N. G., and Whitton, B. A. (eds.), The Biology of Cyanobacteria. Berkeley: University of California Press, pp. 491–513.

    Google Scholar 

  • Freytet, P., and Verrecchia, E. P., 1998. Freshwater organisms that build stromatolites: a synopsis of biocrystallization by prokaryotic and eukaryotic algae. Sedimentology, 45, 535–563.

    Article  Google Scholar 

  • Gomes, N. A., 1985. Modern stromatolites in a karst structure from the Malmani subgroup, Transvaal sequence, South Africa. Transaction of the Geological Society of South Africa, 88, 1–9.

    Google Scholar 

  • Gómez, F., Furuya, K., and Takeda, S., 2005. Distribution of the cyanobacterium Richelia intracellularis as an epiphyte of the diatom Chaetoceros compressus in the western Pacific Ocean. Journal of Plankton Research, 27, 323–330.

    Article  Google Scholar 

  • Golubic, S., 1976. Organisms that build stromatolites. In Walter, M. R. (ed.), Stromatolites. Amsterdam: Elsevier, pp. 113–126.

    Chapter  Google Scholar 

  • Graham, L. E., Graham, J. M., and Wilcox, L. W., 2009. Algae, 2nd edn. San Francisco: Pearson Benjamin Cummings.

    Google Scholar 

  • Heath, C. R., Leadbeater, B. C. S., and Callow, M. E., 1995. Effect of inhibitors on calcium carbonate deposition mediated by freshwater algae. Journal of Applied Phycology, 7, 367–380.

    Article  Google Scholar 

  • Janson, S., Rai, A. N., and Bergman, B., 1995. Intracellular cyanobiont Richelia intracellularis: ultrastructure and immuno-localisation of phycoerythrin, nitrogenase, Rubisco and glutamine synthetase. Marine Biology, 124, 1–8.

    Article  Google Scholar 

  • Janson, S., Wouters, J., Bergman, B., and Carpenter, E. J., 1999. Host specificity in the Richelia-diatom symbiosis revealed by hetR gene sequence analysis. Environmental Microbiology, 1, 431–438.

    Article  Google Scholar 

  • Keeling, P. J., 2004. Diversity and evolutionary history of plastids and their hosts. American Journal of Botany, 91, 1481–1493.

    Article  Google Scholar 

  • Kemp, A. E. S., Pike, J., Pearce, R. B., and Lange, C. B., 2000. The “fall dump” – a new perspective on the role of a “shade flora” in the annual cycle of diatom production and export flux. Deep-Sea Research, 47, 2129–2154.

    Article  Google Scholar 

  • Kilham, P., Kilham, S. S., and Hecky, R. E., 1986. Hypothesized resource relationships among African planktonic diatoms. Limnology and Oceanography, 31, 1169–1181.

    Article  Google Scholar 

  • Kooistra, W. H. C. F., and Medlin, L. K., 1996. Evolution of the diatoms (Bacillariophyta). IV: a reconstruction of their age from small subunit rRNA coding regions and the fossil record. Molecular Phylogenetics and Evolution, 6, 391–407.

    Article  Google Scholar 

  • Kooistra, W. H. C. F., Gersonde, R., Medlin, L. K., and Mann, D. G., 2007. The origin and evolution of diatoms: their adaptation to a planktonic existence. In Falkowski, P. G., and Knoll, A. H., (eds.), Evolution of Primary Producers in the Sea. New York: Academic, pp. 210–249.

    Google Scholar 

  • Lee, J. J., and Correia, M., 2005. Endosymbiotic diatoms from previously unsampled habitats. Symbiosis, 38, 251–260.

    Google Scholar 

  • Lee, R. E., 2008. Phycology, 4th edn. Cambridge: Cambridge University Press, ISBN 978-0521-68277-0.

    Book  Google Scholar 

  • Mague, T. H., Weare, N. M., and Holm-Hansen, O., 1974. Nitrogen fixation in the North Pacific Ocean. Marine Biology, 24, 109–119.

    Article  Google Scholar 

  • McFadden, G. I., 2001. Primary and secondary endosymbiosis and the origin of plastids. Journal of Phycology, 37, 951–959.

    Article  Google Scholar 

  • Medlin, L. K., and Kaczmarska, I., 2004. Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia, 43, 245–270.

    Article  Google Scholar 

  • Neumann, A. C., Gebelein, C. D., and Scoffin, T. P., 1970. The composition, structure and erodability of subtidal mats. Journal of Sedimentary Petrology, 40, 274–297.

    Google Scholar 

  • Norton, T. A., Melkonian, M., and Andersen, R. A., 1996. Algal biodiversity. Phycologia, 35, 308–326.

    Article  Google Scholar 

  • Palmer, J., 2003. The symbiotic birth and spread of plastids: how many times and whodunit? Journal of Phycology, 39, 4–12.

    Article  Google Scholar 

  • Rai, A. N., Söderbäch, E., and Bergman, B., 2000. Cyanobacterium symbioses. New Phytologist, 147, 449–481.

    Article  Google Scholar 

  • Reavice, E. D., Smol, J. P., Carignan, R., and Lorrain, S., 1998. Diatom paleolimnology of two fluvial lakes in the St. Lawrence River. A reconstruction of environmental changes during the last century. Journal of Phycology, 34, 446–456.

    Article  Google Scholar 

  • Round, F. E., Crawford, R. M., and Mann, D. G., 1990. The Diatoms. Biology and Morphology of the Genera. Cambridge: Cambridge University Press, p. 747.

    Google Scholar 

  • Schmidt, A. M. M., 1997. Putative main function of actin bundles in raphid diatoms: necessity for a new locomotion model. Phycologia, 36, 99 (abstract).

    Google Scholar 

  • Sims, P. A., Mann, D. G., and Medlin, L. K., 2006. Phycological reviews: evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia, 45, 361–402.

    Article  Google Scholar 

  • Sumper, M., and Kröger, N., 2004. Silica formation in diatoms: the function of long-chain polyamines and silaffins. Journal of Materials Chemistry, 14, 2059–2065.

    Article  Google Scholar 

  • Tamura, M., Shimada, S., and Horiguchi, T., 2005. Galeidinium rugatum gen. et sp. nov. (Dinophyceae), a new coccoid dinoflagellate with a diatom endosymbiont. Journal of Phycology, 41, 658–671.

    Article  Google Scholar 

  • Tréguer, P., Nelson, D. M., van Bennekom, A. J., DeMaster, D. J., and Leynaert, A., 1995. The silica balance in the world ocean: a reestimate. Science, 268, 375–379.

    Article  Google Scholar 

  • Villareal, T. A., 1994. Widespread occurrence of the Hemiaulus – cyanobacterial symbiosis in the southwest North Atlantic Ocean. Bulletin of Marine Science, 54, 1–7.

    Google Scholar 

  • Winsborough, B. M., and Golubić, S., 1987. The role of diatoms in stromatolite growth: two examples from modern freshwater settings. Journal of Phycology, 43, 195–201.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this entry

Cite this entry

Brinkmann, N., Friedl, T., Mohr, K.I. (2011). Diatoms. In: Reitner, J., Thiel, V. (eds) Encyclopedia of Geobiology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9212-1_74

Download citation

Publish with us

Policies and ethics