Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel


Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_74




Diatoms (Chromalveolates supergroup, photosynthetic Stramenopiles, Bacillariophyta) are unicellular or colonial eukaryotic algae with unique cell walls composed of amorphous silica and consisting of two parts.

The diatoms (Bacillariophyta) represent an extremely diverse and successful lineage of photosynthetic Stramenopiles (Chromalveolates) with cell walls composed of amorphous silica and consisting of two parts, termed frustules , as their most striking feature. The diatoms are of unicellular organization, but some form colonies. The diatom plastids are derived from red algal secondary symbiosis and are golden brown due to the high concentration of the carotenoid fucoxanthin. Diatoms are exceedingly abundant and thought to be the most important group of eukaryotic phytoplankton, responsible for approximately 40% of marine primary productivity (Falkowski et al., 1998). Their high abundance coupled with the resistance of diatom frustules to...


Amorphous Silica Unique Cell Wall Centric Diatom Diatom Frustule Eukaryotic Alga 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Arp, G., Bissett, A., Brinkmann, N., Cousin, S., De Beer, D., Friedl, T., Mohr, K. I., Neu, T. R., Reimer, A., Shiraishi, F., Stackebrandt, E., and Zippel, B., 2010. Tufa-forming biofilms of German karstwater streams: microorganisms, exopolymers, hydrochemistry and calcification. London: Geological Society. Special publications, Vol. 336, pp. 83–118.Google Scholar
  2. Awramik, S. M., and Vanyo, J. P., 1986. Heliotropism in modern Stromatolites. Science, 231, 1279–1281.CrossRefGoogle Scholar
  3. Capone, D. G., Zehr, J. P., Paerl, H., Bergman, B., and Carpenter, E. J., 1997. Trichodesmium: a globally significant cyanobacterium. Science, 276, 1221–1229.CrossRefGoogle Scholar
  4. Carpenter, E. J., and Romans, K., 1991. Major role of the cyanobacterium Trichodesmium in nutrient cycling in North Atlantic Ocean. Science, 254, 1356–1358.CrossRefGoogle Scholar
  5. Falkowski, P. G., and Raven, J. A., 1997. Aquatic photosynthesis. Malden: Blackwell Science.Google Scholar
  6. Falkowski, P. G., Barber, R. T., and Smetacek, V., 1998. Biogeochemical controls and feedbacks on ocean primary production. Science, 281, 200–206.CrossRefGoogle Scholar
  7. Fogg, G. E., 1982. Marine plankton. In Carr, N. G., and Whitton, B. A. (eds.), The Biology of Cyanobacteria. Berkeley: University of California Press, pp. 491–513.Google Scholar
  8. Freytet, P., and Verrecchia, E. P., 1998. Freshwater organisms that build stromatolites: a synopsis of biocrystallization by prokaryotic and eukaryotic algae. Sedimentology, 45, 535–563.CrossRefGoogle Scholar
  9. Gomes, N. A., 1985. Modern stromatolites in a karst structure from the Malmani subgroup, Transvaal sequence, South Africa. Transaction of the Geological Society of South Africa, 88, 1–9.Google Scholar
  10. Gómez, F., Furuya, K., and Takeda, S., 2005. Distribution of the cyanobacterium Richelia intracellularis as an epiphyte of the diatom Chaetoceros compressus in the western Pacific Ocean. Journal of Plankton Research, 27, 323–330.CrossRefGoogle Scholar
  11. Golubic, S., 1976. Organisms that build stromatolites. In Walter, M. R. (ed.), Stromatolites. Amsterdam: Elsevier, pp. 113–126.CrossRefGoogle Scholar
  12. Graham, L. E., Graham, J. M., and Wilcox, L. W., 2009. Algae, 2nd edn. San Francisco: Pearson Benjamin Cummings.Google Scholar
  13. Heath, C. R., Leadbeater, B. C. S., and Callow, M. E., 1995. Effect of inhibitors on calcium carbonate deposition mediated by freshwater algae. Journal of Applied Phycology, 7, 367–380.CrossRefGoogle Scholar
  14. Janson, S., Rai, A. N., and Bergman, B., 1995. Intracellular cyanobiont Richelia intracellularis: ultrastructure and immuno-localisation of phycoerythrin, nitrogenase, Rubisco and glutamine synthetase. Marine Biology, 124, 1–8.CrossRefGoogle Scholar
  15. Janson, S., Wouters, J., Bergman, B., and Carpenter, E. J., 1999. Host specificity in the Richelia-diatom symbiosis revealed by hetR gene sequence analysis. Environmental Microbiology, 1, 431–438.CrossRefGoogle Scholar
  16. Keeling, P. J., 2004. Diversity and evolutionary history of plastids and their hosts. American Journal of Botany, 91, 1481–1493.CrossRefGoogle Scholar
  17. Kemp, A. E. S., Pike, J., Pearce, R. B., and Lange, C. B., 2000. The “fall dump” – a new perspective on the role of a “shade flora” in the annual cycle of diatom production and export flux. Deep-Sea Research, 47, 2129–2154.CrossRefGoogle Scholar
  18. Kilham, P., Kilham, S. S., and Hecky, R. E., 1986. Hypothesized resource relationships among African planktonic diatoms. Limnology and Oceanography, 31, 1169–1181.CrossRefGoogle Scholar
  19. Kooistra, W. H. C. F., and Medlin, L. K., 1996. Evolution of the diatoms (Bacillariophyta). IV: a reconstruction of their age from small subunit rRNA coding regions and the fossil record. Molecular Phylogenetics and Evolution, 6, 391–407.CrossRefGoogle Scholar
  20. Kooistra, W. H. C. F., Gersonde, R., Medlin, L. K., and Mann, D. G., 2007. The origin and evolution of diatoms: their adaptation to a planktonic existence. In Falkowski, P. G., and Knoll, A. H., (eds.), Evolution of Primary Producers in the Sea. New York: Academic, pp. 210–249.Google Scholar
  21. Lee, J. J., and Correia, M., 2005. Endosymbiotic diatoms from previously unsampled habitats. Symbiosis, 38, 251–260.Google Scholar
  22. Lee, R. E., 2008. Phycology, 4th edn. Cambridge: Cambridge University Press, ISBN 978-0521-68277-0.CrossRefGoogle Scholar
  23. Mague, T. H., Weare, N. M., and Holm-Hansen, O., 1974. Nitrogen fixation in the North Pacific Ocean. Marine Biology, 24, 109–119.CrossRefGoogle Scholar
  24. McFadden, G. I., 2001. Primary and secondary endosymbiosis and the origin of plastids. Journal of Phycology, 37, 951–959.CrossRefGoogle Scholar
  25. Medlin, L. K., and Kaczmarska, I., 2004. Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia, 43, 245–270.CrossRefGoogle Scholar
  26. Neumann, A. C., Gebelein, C. D., and Scoffin, T. P., 1970. The composition, structure and erodability of subtidal mats. Journal of Sedimentary Petrology, 40, 274–297.Google Scholar
  27. Norton, T. A., Melkonian, M., and Andersen, R. A., 1996. Algal biodiversity. Phycologia, 35, 308–326.CrossRefGoogle Scholar
  28. Palmer, J., 2003. The symbiotic birth and spread of plastids: how many times and whodunit? Journal of Phycology, 39, 4–12.CrossRefGoogle Scholar
  29. Rai, A. N., Söderbäch, E., and Bergman, B., 2000. Cyanobacterium symbioses. New Phytologist, 147, 449–481.CrossRefGoogle Scholar
  30. Reavice, E. D., Smol, J. P., Carignan, R., and Lorrain, S., 1998. Diatom paleolimnology of two fluvial lakes in the St. Lawrence River. A reconstruction of environmental changes during the last century. Journal of Phycology, 34, 446–456.CrossRefGoogle Scholar
  31. Round, F. E., Crawford, R. M., and Mann, D. G., 1990. The Diatoms. Biology and Morphology of the Genera. Cambridge: Cambridge University Press, p. 747.Google Scholar
  32. Schmidt, A. M. M., 1997. Putative main function of actin bundles in raphid diatoms: necessity for a new locomotion model. Phycologia, 36, 99 (abstract).Google Scholar
  33. Sims, P. A., Mann, D. G., and Medlin, L. K., 2006. Phycological reviews: evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia, 45, 361–402.CrossRefGoogle Scholar
  34. Sumper, M., and Kröger, N., 2004. Silica formation in diatoms: the function of long-chain polyamines and silaffins. Journal of Materials Chemistry, 14, 2059–2065.CrossRefGoogle Scholar
  35. Tamura, M., Shimada, S., and Horiguchi, T., 2005. Galeidinium rugatum gen. et sp. nov. (Dinophyceae), a new coccoid dinoflagellate with a diatom endosymbiont. Journal of Phycology, 41, 658–671.CrossRefGoogle Scholar
  36. Tréguer, P., Nelson, D. M., van Bennekom, A. J., DeMaster, D. J., and Leynaert, A., 1995. The silica balance in the world ocean: a reestimate. Science, 268, 375–379.CrossRefGoogle Scholar
  37. Villareal, T. A., 1994. Widespread occurrence of the Hemiaulus – cyanobacterial symbiosis in the southwest North Atlantic Ocean. Bulletin of Marine Science, 54, 1–7.Google Scholar
  38. Winsborough, B. M., and Golubić, S., 1987. The role of diatoms in stromatolite growth: two examples from modern freshwater settings. Journal of Phycology, 43, 195–201.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Geomicrobiology Group Center for Applied GeoscienceUniversity of TübingenTübingenGermany
  2. 2.University of Göttingen, Albrecht-von-Haller-Institute for Plant SciencesHelmholtz Centre for Infection ResearchBraunschweigGermany