Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel


  • Roman Aubrecht
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_226


Stromatactis is defined as a mass of spar (with partial substitution of internal sediment) which has smooth base, digitate roof, occurs in swarms and has reticulate distribution (Bathurst, 1982). Neuweiler et al. ( 2001) distinguished the terms “stromatactis,” “inhibited stromatactis,” and “aborted stromatactis” (Figure 1). Stromatactis originated when early internal sedimentation occurred in the open space of the cavity network followed by centripetal cementation by early marine cements in residual cavity space. Aborted stromatactis resulted from internal sediment filling of the entire or near-entire original cavity network. Inhibited stromatactis refers to incipient marine cementation of the stromatactid cavity followed by entire or near-entire internal sediment filling.


Late Jurassic Middle Jurassic Internal Erosion Sediment Filling Internal Sediment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Aubrecht, R., Krobicki, M., Wierzbowski, A., Matyja, A., and Schlögl, J., 2002. Jurassic stromatactis mud-mounds in the Pieniny Klippen Belt (Western Carpathians) – petrography and stratigraphy. In Bucur, I. I., and Filipescu, S. (eds.), Research Advances in Calcareous Algae and Microbial Carbonates. Proceedings of the 4th IFAA Regional Meeting Cluj-Napoca, August 29–September 5, 2001. Cluj University Press, pp. 1–16.Google Scholar
  2. Aubrecht, R., Schlögl, J., Krobicki, M., Wierzbowski, H., Matyja, B. A., and Wierzbowski, A., 2009. Middle Jurassic stromatactis mud-mounds in the Pieniny Klippen Belt (Carpathians) – a possible clue to the origin of stromatactis. Sedimentary Geology, 213(3–4), 97–112.CrossRefGoogle Scholar
  3. Bathurst, R. G. C., 1982. Genesis of stromatactis cavities between submarine crusts in paleozoic carbonate mud buildups. Journal of the Geological Society, London, 139, 165–181.CrossRefGoogle Scholar
  4. Bernet-Rollande, M. C., Maurin, A. F., and Monty, C. L. V., 1981. De la bactérie au réservoir carbonaté. Pétrole et Techniques, 283, 96–98.Google Scholar
  5. Black, W. W., 1952. The origin of the supposed tufa bands in Carboniferous reef limestones. Geological Magazine, 89, 195–200.CrossRefGoogle Scholar
  6. Bosence, D. W. J., and Bridges, P. H., 1995. A review of the origin and evolution of carbonate mud-mounds. In Monty, C. L. V., Bosence, D. W. J., Bridges, P. H., and Pratt, B. R. (eds.), Carbonate Mud-Mounds: Their Origin and Evolution. IAS special publication 23, pp. 11–48.Google Scholar
  7. Bourque, P. A., and Gignac, H., 1983. Sponge constructed stromatactis mud-mounds. Silurian of Gaspé, Québec. Journal of Sedimentary Petrology, 53, 521–532.Google Scholar
  8. Bourque, P. A., and Boulvain, F., 1993. A model for the origin and petrogenesis of the red stromatactis limestone of Paleozoic carbonate mounds. Journal of Sedimentary Petrology, 63, 607–619.Google Scholar
  9. Bridges, P. H., and Chapman, A. J., 1988. The anatomy of a deep water mud-mound complex to the southwest of the Dinantian platfom in Derbyshire, UK. Sedimentology, 35, 139–162.CrossRefGoogle Scholar
  10. Camoin, G., and Maurin, A.-F., 1988. Rôles des micro-organismes (bactéries, cyanobactéries) dans la genèse des “Mud Mounds”. Exemples du Turonien des Jebels Biréno et Mrhila (Tunisie). Comptes Rendus de l'Académie des sciences Paris, 307Sér. II, 401–407.Google Scholar
  11. Canerot, J., 2001. Cretaceous mud-mounds from the Western Pyrenees and the South-Aquitaine Basin (France). Stratigraphic and geodynamic settings; petroleum trap properties. Géologie Méditerranée, 28(1–2), 33–36.Google Scholar
  12. Carozzi, A. V., and Zadnik, V. E., 1959. Microfacies of Wabash reef, Wabash, Indiana. Journal of Sedimentary Petrology, 29, 164–171.Google Scholar
  13. Coron, C. R., and Textoris, D. A., 1974. Non-calcarous algae in Silurian carbonate mud mound, Indiana. Journal of Sedimentary Petrology, 44, 1248–1250.Google Scholar
  14. Cross, T. A., and Klosterman, M. J., 1981. Primary submarine cements and neomorphic spar in a stromatolitic-bound phylloid algal bioherm, Laborcita Formation (Wolfcampian), Sacramento Mountains, New Mexico, U.S.A. In Monty, C. L. V. (ed.), Phanerozoic Stromatolites. Berlin: Springer, pp. 60–73.CrossRefGoogle Scholar
  15. Delecat, S., and Reitner, J., 2005. Sponge communities from the Lower Liassic of Adnet (Northern Calcareous Alps, Austria). Facies, 51, 385–404.CrossRefGoogle Scholar
  16. Desbordes, B., and Maurin, A. F., 1974. Troix exemples d’études du Frasnien de l’Alberta, Canada. Notes et Mémoires de la Compagnie Française des Pétroles (Paris), 11, 293–336.Google Scholar
  17. Dunham, R. J., 1969. Early vadose silt in Towsend mound (reef ), New Mexico. In Friedman, G. M. (ed.), Depositional Environments in Carbonate Rocks - A Symposium. SEPM special publication, Vol. 14, pp. 139–181.Google Scholar
  18. Dupont, E., 1881. Sur l’origine des calcaires dévoniens de la Belgique. Bulletin de Musee royal d’Histoire naturelle de Belgique, 1, 264–280.Google Scholar
  19. Dupont, E., 1882. Les Iles coralliennes de Roly et de Phillippeville. Bulletin de l’Academie Royal de Beigique, sér.3, 2, 89–160.Google Scholar
  20. Flajs, G., and Hüssner, H., 1993. A microbial model for the Lower Devonian stromatactis mud mounds of the Montagne Noire (France). Facies, 29, 179–194.CrossRefGoogle Scholar
  21. Flajs, G., Hüssner, H., and Vigener, M., 1996. Stromatactis mud mounds in the Upper Emsian of the Montagne Noire (France): formation and diagenesis of stromatactis structures. In Reitner, J., Neuweiler, F., and Gunkel, F. (eds.), Global and Regional Controls on Biogenic Sedimentation. I. Reef Evolution. Research reports. Gött. Arb. Geol. Paläont., Sb2, 345–348.Google Scholar
  22. Heckel, P. H., 1972. Possible inorganic origin for stromatactis in calcilutite mounds in the Tully Limestone, Devonian of New York. Journal of Sedimentary Petrology, 42, 7–18.Google Scholar
  23. Hladil, J., 2005. The formation of stromatactis-type fenestral structures during the sedimentation of experimental slurries – a possible clue to a 120-year-old puzzle about stromatactis. Bulletin of Geosciences, 80, 193–211.Google Scholar
  24. Hladil, J., Růžička, M. C., and Koptíková, L., 2006. Stromatactis cavities in sediments and the role of coarse-grained accessories. Bulletin of Geosciences, 81, 123–146.CrossRefGoogle Scholar
  25. Hladil, J., Koptíková, L., Růžička, M., and Kulaviak, L., 2007. Experimental effects of surfactants on the production of stromatactis-shaped cavities in artificial carbonate sediments. Bulletin of Geosciences, 82, 37–50.CrossRefGoogle Scholar
  26. James, N. P., and Gravestock, D., 1990. Lower Cambrian shelf and shelf margin buildups, Flinders Ranges, South Australia. Sedimentology, 37, 455–480.CrossRefGoogle Scholar
  27. Jansa, L. F., Pratt, B. R., and Dromart, G., 1989. Deep water thrombolite mounds from the Upper Jurassic of offshore Nova Scotia. In Geldsetzer, H. H., James, N. P., and Tebutt, G. E. (eds.), Reefs, Canada and Adjacent Areas. Canadian Society of Petroleum Geologists, 13, 725–735.Google Scholar
  28. Kauffman, E. G., Arthur, M. A., Howe, B., and Scholle, P. A., 1996. Widespread venting of methane-rich fluids in Late Cretaceous (Campanian) submarine springs (Tepee Buttes), Western Interior seaway, USA. Geology, 24(9), 799–802.CrossRefGoogle Scholar
  29. Krause, F. F., 2001. Genesis and geometry of the Meiklejohn Peak lime mud-mound, Bare Mountain Quadrangle, Nevada, USA. Sedimentary Geology, 145, 189–213.CrossRefGoogle Scholar
  30. Kukal, Z., 1971. Open-space structures in the Devonian limestones of the Barrandian (Central Bohemia). Časopis pro mineralogii a geologii, 16, 345–362.Google Scholar
  31. Logan, B. W., and Semeniuk, V., 1976. Dynamic metamorphism; processes and products in Devonian carbonate rocks, Canning Basin, Western Australia. Geological Society of Australia Special Publication, 6, 1–138.Google Scholar
  32. Lowenstam, H. A., 1950. Niagaran reefs of the Great Lakes area. Journal of Geology, 58, 430–487.CrossRefGoogle Scholar
  33. Matyszkiewicz, J., 1993. Genesis of stromatactis in an Upper Jurassic carbonate buildup (Mlynka, Cracow region, Southern Poland): internal reworking and erosion of organic growth cavities. Facies, 28, 87–96.CrossRefGoogle Scholar
  34. Matyszkiewicz, J., 1997. Stromatactis cavities and stromatactis-like cavities in the Upper Jurassic carbonate buildups at Mlynka and Zabierzów (Oxfordian, southern Poland). Annales, Société Géologique de Pologne, 67, 45–55.Google Scholar
  35. Neumann, A. C., Kofoed, J. W., and Keller, G. H., 1977. Lithoherms in the straits of Florida. Geology, 5, 4–10.CrossRefGoogle Scholar
  36. Neuweiler, F., Bourque, P.-A., and Boulvain, F., 2001. Why is stromatactis so rare in Mesozoic carbonate mud mounds? Terra Nova, 13, 338–346.CrossRefGoogle Scholar
  37. Neuweiler, F., Gautret, P., Thiel, V., Langes, R., Michaelis, W., and Reitner, J., 1999. Petrology of Lower Cretaceous carbonate mud mounds (Albian, N. Spain): insights into organomineralic deposits of the geological record. Sedimentology, 46, 837–859.CrossRefGoogle Scholar
  38. Orme, G. R., and Brown, W. W. M., 1963. Diagenetic fabrics in the Avonian Limestones of Derbyshire and North Wales. Proceedings of the Yorkshire Geological Society, 34, 51–66.CrossRefGoogle Scholar
  39. Pascal, A., and Przybyla, A., 1989. Processus biosédimentaires et diagénétiques précoces dans les mud-mounds (Thrombolite-mounds) urgoniens d’spagne du Nord (Aptien-Albien) et leus signification. Géologie Méditerranée, 16(2–3), 171–183.Google Scholar
  40. Philcox, M. E., 1963. Banded calcite mudstone in the Lower Carboniferous “reef” knolls of the Dublin Basin, Ireland. Journal of Sedimentary Petrology, 33, 904–913.CrossRefGoogle Scholar
  41. Pratt, B. R., 1982. Stromatolitic framework of carbonate mud-mounds. Journal of Sedimentary Petrology, 52, 1203–1227.CrossRefGoogle Scholar
  42. Pratt, B. R., 1995. The origin, biota and evolution of deep-water mud-mounds. In Monty, C. L. V., Bosence, D. W. J., Bridges, P. H., and Pratt, B. R. (eds.), Carbonate Mud-Mounds: Their Origin and Evolution. IAS special publication 23, pp. 49–123.Google Scholar
  43. Ross, R. J. Jr., Jaanusson, V., and Friedman, I., 1975. Lithology and origin of Middle Ordovician calcareous mudmounds at Meiklejohn Peak, southern Nevada. U.S.G.S. Professional Paper, 871, 1–48.Google Scholar
  44. Schwarzacher, W., 1961. Petrology and structure of some Lower Carboniferous reefs in northwestern Ireland. AAPG Bulletin, 46, 1481–1503.Google Scholar
  45. Shinn, E. A., 1968. Burrowing in Recent lime sediments of Florida and the Bahamas. Journal of Paleontology, 42, 879–894.Google Scholar
  46. Textoris, D. A., 1966. Algal cap for a Niagaran (Silurian) carbonate mud mound of Indiana. Journal of Sedimentary Petrology, 36, 455–461.Google Scholar
  47. Textoris, D. A., and Carozzi, A. V., 1964. Petrography and evolution of Niagaran (Silurian) reefs, Indiana. AAPG Bulletin, 48, 397–426.Google Scholar
  48. Tsien, H. H., 1985. Origin of Stromatactis - a replacement of colonial microbial accretion. In Toomey, D. F., and Nitecki, M. H. (eds.), Paleoalgology. Berlin: Springer, pp. 274–289.CrossRefGoogle Scholar
  49. Wallace, M. W., 1987. The role of internal erosion and sedimentation in the formation of stromatactis mudstones and associated lithologies. Journal of Sedimentary Petrology, 57, 695–700.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Roman Aubrecht
    • 1
  1. 1.Department of Geology and Paleontology Faculty of Natural SciencesComenius UniversityBratislavaSlovakia