Advertisement

Small-Angle Neutron Scattering and Applications in Soft Condensed Matter

  • I. Grillo

1 Introduction

The aim of a small-angle neutron scattering (SANS) experiment is to determine the shape and the organization, averaged in time, of particles or aggregates dispersed in a continuous medium. The term particle is applied to a wide range of objects, as for example, small colloidal particles (clay, ferrofluid, nanotube), surfactant aggregates (micelles, lamellar, hexagonal, cubic, or sponge phases), polymers and all derivatives, liquid crystal, model membranes, proteins in solution, flux line lattices in supraconductors. The list is not exhaustive.

Small-angle scattering was discovered in the late 1930s by Guinier during X-ray diffraction experiments on metal alloys [1]. The main principles and equations still in use are exposed by Guinier and Fournet [2] in the very first monograph on SAXS. The development of SANS experiments started 30 years later, in the 1960s. The increase of interest was related to the pioneering work of Sturhmann et al. [3, 4, 5] where contrast...

Keywords

Form Factor Multiple Scattering Bragg Peak Incoherent Scattering Scatter Length Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I would warmly thank Dr. S. King and Dr R. Heenan (ISIS), for the documents supplied on LOQ. I am grateful to P. Van Esch (ILL, Grenoble) for the technical explanations on detectors. I am grateful to Ron Ghosh (Institut Laue Langevin) for discussion on instrument resolution. I would like to thank Bruno Demé for helpful discussions in perspective and application for USANS instruments. Thanks to C. Dewhurst for the manuscript reading and comments on data analysis. I thank R. May for the training on D22 at the ILL and all fruitful discussions.

References

  1. 1.
    Guinier, A. (1939) Ann. Phys. Paris., 12, 161–237.zbMATHGoogle Scholar
  2. 2.
    Guinier, A., Fournet, G. (1955) Small Angle Scattering of X-Rays. Wiley, New York.Google Scholar
  3. 3.
    Stuhrmann, H.B. (1974) Neutron Small-angle scattering of biological macromolecules in solution. J. Appl. Cryst., 7, 173–178.CrossRefGoogle Scholar
  4. 4.
    Stuhrmann, H.B. and Duee, E.D. (1975) The determination of the scattering density distribution of polydisperse solutions by contrast variation: a neutron scattering study of ferritin. J. Appl. Cryst., 8, 538–542.CrossRefGoogle Scholar
  5. 5.
    Ibel, K. and Stuhrmann, H.B. (1975) J. Mol. Biol., 93, 255–265.CrossRefGoogle Scholar
  6. 6.
  7. 7.
    Glinka, C.J., Barker, J.G., Hammouda, B., Krueger, S., Moyer, J.J., and Orts, W.J. (1998) The 30 m small angle neutron scattering experiments at the national institute of standards and technology. J. Appl. Cryst., 31, 430–445.CrossRefGoogle Scholar
  8. 8.
    Heenan, R.K., Penfold, J., King, S.M (1997) SANS at pulsed neutron sources: present and future prospects. J. Appl. Cryst., 30, 1140–1147 (http://www.isis.rl.ac.uk/largescale/loq/loq.htm).
  9. 9.
    Knoll, G.F. and Wihley J.(1989) Position-sensitive detection of thermal neutrons. In Convert, P. and Forsyth, J.B. (ed.), Radiation Detection and Measurement. Academic Press, New York.Google Scholar
  10. 10.
    Knoll, G.F. (1989) Radiation Detection and Measurement, Chap. 7, 2nd ed. Wiley, New York; P. Lindner, Dead time of the BF3 detector at D11, ILL Technical report, ILL98/LI 12 T (1998).Google Scholar
  11. 11.
    Van Esc, P., Gahl, T., Guérard, B. (2004) Design criteria for electronics for resistive charge division in thermal neutron detection. Nucl. Instr. Meth. Phys., Res. A, 526, 493–500.ADSCrossRefGoogle Scholar
  12. 12.
    Van Esch, P. and Millier, F. (2003) Optimal lookup table construction with respect to efficiency flatness. Rev. Sci. Instrum., 74, 5058–5061.ADSCrossRefGoogle Scholar
  13. 13.
    Scherm, R. and Fak, B. (1993) Neutron and synchrotron radiation for condensed matter studies. In Baruchel, J. Hodeau, J.L., Lehmann, M.S., Regnard, J.R., and Schlenker C. (eds.), Theory, instruments and methods. Les Editions de physique, Vol 1, Chap. 5. Springer, Berlin.Google Scholar
  14. 14.
    May, R., Hendriks, J., and Crielaard, W. (2005) Real-time neutron scattering investigations of biological signal transduction dynamics. Proceedings of the International Symposium on Research Reactor and Neutron Science, Daejeon, Korea, pp 777–781.Google Scholar
  15. 15.
    Bent, J., Hutchings, L.R., Richards, R.W., Cough, T., Spares, R., Coates, P.D., Grillo, I., Harlen, O.G., Read, D.J., Graham, R.S., Likhtman, A.E.,Groves, D.J., and Nicholson, T.M (2003) Neutron -mapping polymer flow: scattering flow visualization and molecular theory. T.C.B. McLeish Sci., 301, 1691–1695 (abstract).Google Scholar
  16. 16.
    Heinemann, A., Wiedenmann, A. (2005) Insight into the formation of partially ordered structures in Co-based ferrofluids. J. Magn. Magn. Mater., 289, 149–151.ADSCrossRefGoogle Scholar
  17. 17.
    Jacrot, B. and Zaccai, G. (1981) Determination of molecular weight by neutron scattering. Biopolymers, 20, 2413–2426.CrossRefGoogle Scholar
  18. 18.
    Lindner, P. (2000) Water calibration at D11 verified with polymer samples. J. Appl. Crystallogr., 33, 807–811.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gosh, R.E, Egelhaaf, S.U., and Rennie, A.R. (1998) A computing guide for Small-Angle Scattering Experiments; ILL report ILL98GH14T. GRASP for Graphical Reduction and analysis SANS program for Matlab™ by C. Dewhurst (http://www.ill.eu/sites/grasp/grasp_main.html).
  20. 20.
    Sears, V.F. (1992) Neutron scattering lengths and crossed sections. Neutron News, 3, 26–37.CrossRefGoogle Scholar
  21. 21.
    Schelten, J. and Schmatz, W. (1980) Multiple scattering treatment for small-angle scattering problems. J. Appl. Crystallogr., 13, 385–390; Goyal, P.S., King, J.S., and Summerfield, G.C. (1983) Multiple scattering in small-angle neutron scattering measurements on polymers. Polymer, 24, 131–134; Berk, N.F. and Hardman-Rhyne, K.A. (1988) Analysis of SAS data dominated by multiple scattering. J. Appl. Crystallogr., 21, 645–651.Google Scholar
  22. 22.
    Lal, J., Widmaier, J.M., Bastide, J., and Boué, F. (1994) Determination of an interpenetrating network structure by small angle neutron scattering. Macromolecules, 27, 6443–6451.ADSCrossRefGoogle Scholar
  23. 23.
    Morfin, I., Ehrburger-Dolle, F., Grillo, I., Livet, F., and Bley, F. (2006) ASAXS, SAXS and SANS investigations of vulcanized elastomers filled with carbon black. Part 6, 445–452.Google Scholar
  24. 24.
    Brûlet, A., Lairez, D., Lapp, A., Cotton, J.P. (2007) Improvement of data treatment in small-angle neutron scattering J Appl Cryst. 40, 165–177.Google Scholar
  25. 25.
    Silas, J.A. and Kaler, E.W. (2003). Effect of multiple scattering from bicontinuous microemulsions. J. Colloid Interface Sci., 257, 291–298.CrossRefGoogle Scholar
  26. 26.
    Glatter, O. and Kratky, O. (1982) Small Angle X-Ray Scattering. Academic Press, London.Google Scholar
  27. 27.
    Boué, F., Cotton, J.P., Lapp, A., and Jannink, G. (1994) A direct measurement of the polyion conformation in aqueous solutions at different temperatures. Small angle neutron scattering of PSSNa using zero average and full contrast. J. Chem. Phys., 101, 2562–2568; Brûlet, A., Boué, F., Cotton, J.P. (1996) About the experimental determination of the persistence length of wormlike chains of polystyrene. J. Phys. II France, 6, 885–891; Spitéri, M.N., Boué, F., Lapp, A., and Cotton, J.P. (1996) Persistence length for a PSSNA Polyion in semidilute solution as a function of the ionic strength. Phys. Rev. Lett., 77, 5218–5220.Google Scholar
  28. 28.
    Morfin, I., Lindner, P., and Boué, F. (2004) Shear–induced concentration fluctuations and form factor changes in polymer solution in the good-solvent regime. Eur. Phys. J. E., 15, 41–45.Google Scholar
  29. 29.
    Oberdisse, J. (2007) Current Opinion in Colloid an Interface Science. Adsorption grafting on colloidal interfaces studied by scattering techniques. 12, 3–8.Google Scholar
  30. 30.
    Boué, F., Cousin, F., Gummel, J., Oberdisse, J., Carrot, G., El Harrack, A. (2007) Small angle scatteing from soft matter – application to complex mixed systems. C.R. Phys 8, 821–844.Google Scholar
  31. 31.
    Balnois, E., Durand-Vidal, S., and Levitz, P. (2003) Probing the morphology of Laponite clay colloids by atomic force microscopy. Langmuir, 19, 6633–6637.CrossRefGoogle Scholar
  32. 32.
    Mourchid, A., Delville, A., Lambard, J., Lécolier, E., and Levitz, P. (1995) Phase diagram of colloidal dispersions of anisotropic charged particles: equilibrium properties, structure and rheology of laponite suspensions. Langmuir, 11, 1942–1950.CrossRefGoogle Scholar
  33. 33.
    Grillo, I. (personal communication).Google Scholar
  34. 34.
    Bates, F.S., Wignall, G.D., and Koehler, W.C. (1985) Critical behavior of binary liquid mixtures of deuterated and protonated polymer. Phys. Rev. Lett., 55, 2425.ADSCrossRefGoogle Scholar
  35. 35.
    Arleth, L. and Pedersen, J.S. (2000) Scattering vector dependence of the small-angle scattering from mixtures of hydrogenated and deuterated organic solvents. J. Appl. Crystallogr., 33, 650–652.CrossRefGoogle Scholar
  36. 36.
    Jacrot, J. (1976) The study of biological structures by neutron scattering from solution. Rep. Prog. Phys., 39, 911–953.ADSCrossRefGoogle Scholar
  37. 37.
    Pedersen J. (1997) Analysis of small-angle scattering data from colloids and polymer solutions: modeling and least-squares fitting. Adv. Colloid Interface Sci., 70, 171–210.CrossRefGoogle Scholar
  38. 38.
    Rayleigh, L. (1911) The Incidence of Light upon a Transparent Sphere of Dimensions Comparable with the Wave-Length. Proc. Royal. Soc. Lodon. Ser. A., 84, 25–38.ADSCrossRefGoogle Scholar
  39. 39.
    Dingenouts, N., Selenmeyer, S., Deike, I., Roseneldt, S., Ballauf, M., Lindner, P., and Narayanan, T. (2001) Analysis of thermosensitive core-shell colloids by small-angle neutron scattering including contrast variation. Phys. Chem. Chem. Phys., 3, 1169–1174.CrossRefGoogle Scholar
  40. 40.
    Sommer, C., Pedersen, J.S., and Garamus, V.M. (2005) Sructure and interaction of block copolymer micelles of Brij 700 studied by combining small-angle X-ray and neutron scattering. Langmuir, 21, 2137–2149.CrossRefGoogle Scholar
  41. 41.
    Bumajdad, A., Eastoe, J., Nave, S., Steytler, D.C., Heenan, R.K., and Grillo, I. (2003) Compositions of mixed surfactant layers in microemulsions determined by SANS. Langmuir, 19, 2560–2567.CrossRefGoogle Scholar
  42. 42.
    Fournet, G. (1951) Bull. Soc. Fr. Minér. Crist., 74, 39–113.Google Scholar
  43. 43.
    Eastoe, J., Rogueda, P., Shariatmadai, D., and Heenan, R. (1996) Micelles of asymmetric chain catanionic surfactants. Colloids surf. A Physicochem. Eng. Asp., 117, 215–225.CrossRefGoogle Scholar
  44. 44.
    Zemb, T., Dubois, M., Demé, B., and Gulik-Krzywicki, T. (1999) Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions. Science, 283, 816–819.ADSCrossRefGoogle Scholar
  45. 45.
    Coulombeau, H., Testard, F., Zemb, T., and Larpent, C. (2004) Effect of recognized and unrecognized salt on the self-assembly of new thermosensitive metal-chelating surfactants. Langmuir, 20, 4840–4850.CrossRefGoogle Scholar
  46. 46.
    Simmons, B., Agarwal, V., McPherson, G., John, V., and Bose, A. (2002) Small angle neutron scattering study of mixed AOT + lecithin reverse micelles. Langmuir, 18, 8345–8349.CrossRefGoogle Scholar
  47. 47.
    Jung, M., Robinson, B.H., Steytler, D.C., German, A.L, and Heenan, R.K. (2002) Polymerization of styrene in DODAB vesicles: a small-angle neutron scattering study. Langmuir, 18, 2873–2879.CrossRefGoogle Scholar
  48. 48.
    Caillé, A. (1972) X-ray scattering by smectic-A crystals. C. R. Hebd. Acad. Sci. Paris B., 274, 891–893.Google Scholar
  49. 49.
    Nallet, F., Laversanne, R., and Roux, D. (1993) Modelling X-ray or neutron scattering spectra of lyotropic lamellar phases. Interplay between form and structure factors. J Phys. II, 3, 487–502.CrossRefGoogle Scholar
  50. 50.
    Grillo, I. (2003) Small angle neutron scattering of a world-wide known emulsion: Le Pastis Colloids surf. A Physicochem. Eng. Asp., 225, 153–160.CrossRefGoogle Scholar
  51. 51.
    Marchal, D., Bourdillon, C., and Demé Small-Angle, B. (2003) Neutron scattering by highly oriented hybrid bilayer membranes confined in anisotropic porous alumine. Langmuir, 26, 8313–8320.Google Scholar
  52. 52.
    Demé, B. and Zemb, T. (2000) Measurement of sugar depletion from uncharged lamellar phases by SANS contrast variation. J. Appl. Cryst., 33, 569–573.CrossRefGoogle Scholar
  53. 53.
    Kanaya, T., Ohkura, M., Takeshita, H., Kaji, K., Furusaka, M., Yamaoka, H., and Wignall, G.D. (1995) Gelation process of poly(vinyl alcohol) as studied by small-angle neutron and light scattering. Macromolecules, 28, 3168. The Netherlands, Amsterdam.ADSCrossRefGoogle Scholar
  54. 54.
    Steytler, D.C., Dowding, P.J., Robinson, B.H., Hague, J.D., Rennie, J.H.S., Leng, C.A., Eastoe, J., and Heenan R.K. (1998) Characterization of water-in-oil microemulsions formed in silicone oils. Langmuir, 14 3517–3523.CrossRefGoogle Scholar
  55. 55.
    Auvray, L. and Auroy, P. (1991) Neutron, X-Ray and light scattering: introduction to an investigative tool for colloidal and polymeric systems. In Lindner, P. and Zemb, T. (eds.), North Holland delta series. III. Scattering by interfaces: variation on Porod’s law. The Netherlands, North Holland delta series, Amsterdam.Google Scholar
  56. 56.
    Glatter, O. (1977) Data evaluation in small-angle scattering, calculation of radial electron density distribution by means of indirect fourier transformation. Acta Phys. Austriaca, 47, 83–102; Glatter, O. (1977) New method for evaluation of small angle scattering data. J. Appl. Crystallogr., 10, 415–421; Glatter, O. (1980) Determination of particle size distribution functions from small-angle scattering by means of the indirect transformation method. J. Appl. Crystallogr., 13, 7–11.Google Scholar
  57. 57.
    Lindner, P., and Zemb, T. (eds.) (2002) Neutron, X-rays and light: scattering methods applied to soft condensed matter, chaps. 4 and 5. Elsevier. The Netherlands, Amsterdam.Google Scholar
  58. 58.
    Weyerich, B., Brunner-Popela, J., and Glatter, O. (1999) Small-angle scattering of interacting particles. II. Generalized indirect Fourier transformation under consideration of the effective structure factor for polydisperse systems. J. Appl. Crystallogr., 32, 197–209.CrossRefGoogle Scholar
  59. 59.
    Svergun, D.I. and Koch, M.H.J., (2003) Small-angle scattering studies of biological macromolecules in solution. Rep. Prog. Phys., 66, 1735–1782.ADSCrossRefGoogle Scholar
  60. 60.
    Lindner, P. and Zemb, T. (eds.) (2002) Neutron, X-rays and Light: Scattering Methods Applied to Soft Condensed Matter, chapters 14. Elsevier.Google Scholar
  61. 61.
    Percus, J.K and Yevick, G.J. (1958) Analysis of classical mechanics by means of collective coordinates. Phys Rev., 1, 1–13.MathSciNetADSCrossRefGoogle Scholar
  62. 62.
    Hayter, J.B. and Penfold, J. (1981) An analytic structure factor for macroion solutions. Mol. Phys., 42, 109–118.ADSCrossRefGoogle Scholar
  63. 63.
    Hansen, J.P. and Hayter, J.B. (1982) A rescaled MSA structure factor for dilute charged colloidal dispersions. Mol. Phys., 46, 651–656.ADSCrossRefGoogle Scholar
  64. 64.
    Schmatz, W., Springer, T., Schelten, J., and Ibel, K. (1974) Neutron small-angle scattering - Experimental techniques and applications. J. Appl. Cryst., 7, 96–116; Wignall, G.D., Christen, D.K., and Ramakrishnan V. (1988) Instrumental resolution affects in small-angle neutron scattering J. Appl. Cryst., 21, 438–451; Milder, D.F.R. (1990) Design optimization of a small-angle neutron scattering spectrometer. Nucl. Instrum. Methods Phys. Res. A, 290, 259–262.Google Scholar
  65. 65.
    Pedersen, J.S., Posselt, D., and Mortensen, K. (1990) Analytical treatment of the resolution function for small-angle scattering. J. Appl. Crystallogr. 23, 321–333.CrossRefGoogle Scholar
  66. 66.
    Mildner, D.F.R., Carpenter, J.M., and Worcester, D.L. (1986) Measurement and calculation of resolution of time-of-flight small-angle neutron scattering J. Appl. Crystallogr., 19, 311–319.CrossRefGoogle Scholar
  67. 67.
    Né, F., Grillo, I., Taché, O., and Zemb, T.H. (2000) De l’intensité brute à l’intensité absolue, calibration d’une camera Guinier-Mering. J. Phys. IV., 10, 403–413.Google Scholar
  68. 68.
    Huang, T.C., Toraya, H., Blanton, T.N., and Wu, Y (1993) J. Appl. Crystallogr., 26, 180–184.CrossRefGoogle Scholar
  69. 69.
    Grillo, I. (2001) ILL technical Report ILL01GR08T, Effect of instrumental resolution and polydispersity on ideal form factor in Small Angle Neutron Scattering.Google Scholar
  70. 70.
    Mildner, B.F.R. and Carpenter, J.M. (1984) Optimization of the experimental resolution for small-angle scattering. J. Appl.Crystallogr., 17, 249–256.CrossRefGoogle Scholar
  71. 71.
    Lairez, D. (1999) Résolution d’un spectromètre de diffusion de neutrons aux petits angles. J. Phys. IV France, 9, 67–81.Google Scholar
  72. 72.
  73. 73.
    Egelhaaf, S.U., Olsson, U., and Schurteberger, P. (2000) Time resolved SANS for surfactant phase transitions. Physica B, 276–278, 326–329.CrossRefGoogle Scholar
  74. 74.
    Grillo, I., Kats, E.I., and Muratov, A.R. (2003) Formation and growth of anionic vesicles followed by small-angle neutron scattering. Langmuir, 19, 4573–4581.CrossRefGoogle Scholar
  75. 75.
    Gradzielski, M., Grillo, I., and Narayanan, T. (2004) Dynamics of structural transitions in amphiphilic systems monitored by scattering techniques. Prog. Colloid. Polym. Sci., 129, 32–39.Google Scholar
  76. 76.
    Né, F., Testard, F., Zemb, T., et al. (2003) How does ZrO2/surfactant mesophase nucleate? Formation mechanism. Langmuir, 19, 8503–8510.CrossRefGoogle Scholar
  77. 77.
    Williams, R.E. and Michael Rowe J. (2002) Developments in neutron beam devices and in advanced cold source for the NIST research reactor. Physica B, 311, 117–122.ADSCrossRefGoogle Scholar
  78. 78.
    Choi, S.M., Barker, J.G., Glinka, C.J., Cheng, Y.T., and Gammel, P.L. (2000) Focusing cold neutrons with multiple biconcave lenses for small-angle neutron scattering. J. Appl. Crystallogr., 33, 793–796.CrossRefGoogle Scholar
  79. 79.
    Littrell, K.C. (2004) A comparison of different methods for improving flux and resolution on SANS instrument. Nucl. Instrum. Methods Phys. Res. A, 529, 22–27.ADSCrossRefGoogle Scholar
  80. 80.
    Dewhurst, C.D., Anderson, I., and Beguiristain, R. (2001) ILL Annual Report. In Cicognani, G. and Vettier, C. (ed.), Imaging with a Neutron Lens. Google Scholar
  81. 81.
    Bonse, U. and Hart, M. Small-Angle X-Ray Scattering. In Brumberger, H. (ed.), Gordon and Breach, New York, pp 121.Google Scholar
  82. 82.
    Stuhrmann, H.B., Van der Brandt, B., Hautle, P., Konter, J.A., Ninikoski, T.O., Schmitt, M., Willumeit, R. Zhao, J., and Mango, S. (1997) Polarized neutron scattering from polarized nuclei near paramagnetic centres. J. Appl. Crystallogr., 30, 839–843.CrossRefGoogle Scholar
  83. 83.
    Désert, S., Thevenot, J., Oberdisse, A., Brûlet, J. (2007) The new very-small-angle neutron scattering spectrometer at Laboratoire Leon Brillouin. J. Appl. Cryst. 40, S471–S473.CrossRefGoogle Scholar
  84. 84.
    Brûlet, A., Thevenot, V., Lairez, D., Lecommandoux, S., Agut, W., Armes, S.P., Du, L.Z., Désert, S. (2008) Toward a new lower limit for the minimum scattering vector on the very small angle neutron scattering spectrometer at Laboratoire Leon Brillouin. J. Appl. Cryst. 41, 161–166.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • I. Grillo
    • 1
  1. 1.Institute Laue-Langevin Grenoble CedexGrenoble CedexFrance

Personalised recommendations