Number Theory in Islamic Mathematics

  • Jacques Sesiano
Reference work entry

Islamic number theory is characterized by two main developments, both of which stemmed from Greek knowledge. One of them is the relation between natural numbers and the sum of their proper divisors, the other the field of quadratic indeterminate equations.

Numbers and Their Sums of Divisors

If N is a natural number, σ(N  ) the sum of its divisors, and s(N  ) the sum of the divisors without N itself, then Open image in new window

This is a preview of subscription content, log in to check access.


  1. Anbouba, Adel. Un traité d'Abū Ja ˓far [al‐Khazīn] sur les triangles rectangles numériques. Journal for the History of Arabic Science 3 (1979): 134–78.Google Scholar
  2. Djafari Naini, Alireza. Geschichte der Zahlentheorie in Orient. Braunschweig: Klose, 1982.Google Scholar
  3. Sesiano, Jacques. Books IV to VII of Diophantus' Arithmetica. New York: Springer, 1982.Google Scholar
  4. ‐‐‐. Two Problems of Number Theory in Islamic Times. Archive for History of Exact Sciences 41.3 (1991): 235–8.Google Scholar
  5. ‐‐‐. Un traité médiéval sur les carrés magiques. Lausanne: Presses polytechniques et universitaires romandes, 1996.Google Scholar
  6. ‐‐‐. Le traité d'Abu'l‐Wafa' sur les carrés magiques. Zeitschrift für Geschichte der Arabisch‐Islamischen Wissenschaften 12 (1998): 121–244.Google Scholar
  7. Suter, Heinrich. Das Buch der Seltenheiten der Rechenkunst von Abū Kāmil el‐Miṣrī. Bibliotheca Mathematica Ser. 3, 11 (1910/1911): 100–20.Google Scholar
  8. Woepcke, Franz. Notice sur une théorie ajoutée par Thâbit ben Korrah à l'arithmétique spéculative des Grecs. Journal Asiatique Ser. 4, 20 (1852): 420–9.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg New York 2008

Authors and Affiliations

  • Jacques Sesiano

There are no affiliations available