Mathematics in Vietnam

  • Alexei Volkov
Reference work entry

Traditional Vietnamese mathematics has never been studied systematically. Rare mentions of Vietnamese mathematical works are either written by nonspecialists or based on second‐hand information. No systematic efforts were made by modern researchers to locate, publish, or study the corpus of extant Vietnamese documents concerning mathematics. General works by colonial French scholars, such as the book by Huard and Durand (1954: 120, 144) or the paper by the modern Vietnamese author Tạ (1979) contain only scarce and sometimes unreliable information on the traditional Vietnamese mathematics (Volkov 2002: 375). Similarly, no more than a short paragraph was devoted to the topic in the recent book A history of Chinese mathematics by Martzloff (1997: 110).

The first attempt to study the extant materials on Vietnamese mathematics was made by the Chinese mathematician and historian of science, Zhang Yong 章用 (1911–1939). In 1938 Zhang Yong visited Hanoi and explored the collection of books of...

This is a preview of subscription content, log in to check access.


  1. Baldinotti, Julien. Histoire de ce qui s'est passé ès royaumes d'Ethiopie… [par le P. Emanuel Almeida] et de la Chine… [par le P. Emanuel Diaz] avec une briefve narration du voyage qui s'est fait au royaume du Tunquim nouvellement descouvert, tirées des lettres adressées au R. P. général de la compagnie de Jésus. Traduites de l'italien. Paris: S. Cramoisy, 1629.Google Scholar
  2. Borri, Christofle [Christoforo]. Relation de la nouvelle Mission des Peres de la Compagnie de Iesus av Royavme de la Cochinchine. Tradvite de l'italien dv Pere Christofle Borri Milanois, qui fut vn des premiers qui entrerent en ce Royaume. Par le Pere Antoine de la Croix, de la mesme Compagnie. A Rennes, chez Iean Hardy, 1631.Google Scholar
  3. Borri, Christoforo. Relation de la Cochinchine. Bulletin des amis du vieux Hué 18.3–4 (1931): 285–402.Google Scholar
  4. Cadière, Léon and Paul Pelliot. Première étude sur les sources annamites de l'histoire d'Annam. Bulletin de l'École française d'Extrême‐Orient 4 (1904): 617–71.Google Scholar
  5. De Rhodes, Alexandre. Voyages et missions du père Alexandre de Rhodes de la Compagnie de Jésus en la Chine et autres royaumes de l'orient. Paris: Julien, Lanier et Cie, 1854.Google Scholar
  6. Dudink, Ad [=Adrianus]. Opposition to the introduction of Western science and the Nanjing persecution. Statecraft and Intellectual Renewal in Late Ming China: The Cross‐Cultural Synthesis of Xu Guangqi (1562–1633). Ed. Catherine Jami, Peter Engelfreit, and Gregory Blue. Leiden etc.: Brill, 2001.191–224.Google Scholar
  7. Gaspardone, Emile. Bibliographie Annamite. Bulletin de l'Ecole française d'Extrême orient 34.1 (1934): 1–173.Google Scholar
  8. Han, Qi. Zhong Yue lishi shang tianwenxue yu shuxue de jiaoliu (The Interaction Between Chinese and Vietnamese Astronomy and Mathematics in the Past). Zhongguo keji shiliao (Materials on the history of science and technology in China) 12.2 (1991): 3–8.Google Scholar
  9. Huard, Pierre and Maurice Durand. Connaissance du Viet‐Nam. Paris: Imprémerie Nationale, and Hanoi: Ecole Française d'Extrême‐Orient, 1954.Google Scholar
  10. Hucker, Charles O. A Dictionary of Official Titles in Imperial China. Stanford: Stanford University Press, 1985.Google Scholar
  11. Li, Yan. Zhang Yong jun xiuzhi zhongguo suanxue shi yishi (The Heritage of Mr. Zhang Yong's Work on the Restoration of the History of Chinese Mathematics). Li Yan. Zhong suan shi luncong (Collected papers on the history of Chinese mathematics). Taibei: Zhengzhong shuju, 1954. 135–46.Google Scholar
  12. Martzloff, Jean‐Claude. A History of Chinese Mathematics. Berlin etc.: Springer, 1997.Google Scholar
  13. Siu, Man‐Keung and Alexei Volkov. Official curriculum in traditional Chinese mathematics: How did candidates pass the examinations? Historia Scientiarum 9.1 (1999): 87–99.Google Scholar
  14. Tạ, Ngọc Liễn. Vài nét v Open image in new window toán học ở nước ta thời xưa (Some Features of Vietnamese Mathematics in Pre‐modern Times). Tìm hiểu khoa học kỹ thuật trong lịch sử Việt Nam (The Study of Science and Technology in Vietnamese History). Hanoi: Social Sciences Publishing House, 1979. 289–314.Google Scholar
  15. Tran, Nghia and François Gros. Catalogue des Livres en Nôm. Hanoi: Nha Xuat Ban Khoa Hoc Xa Hoi, 1993.Google Scholar
  16. Tran, Van Giap. Les chapitres bibliographiques de Le‐qui‐Don et de Phan‐huy‐Chu. Bulletin de la Société des Etudes Indochinoises (Saigon, Nouvelle Série) 13.1 (1938): 7–217.Google Scholar
  17. Volkov, Alexei. On the origins of the Toan phap dai thanh (Great Compendium of Mathematical Methods). From China to Paris: years transmission of mathematical ideas. Ed. Yvonne Dold-Samplonius, Joseph W. Dauben, Menso Folkerts, and Benno van Dallen. Stuttgart: Franz Steiner Verlag, 2002. 369–410.Google Scholar
  18. ‐‐‐. History of ideas or history of textbooks: Mathematics and mathematics education in traditional China and Vietnam. Proceedings of Asia‐Pacific HPM 2004 Conference: History, Culture, and Mathematics Education in the New Technology era, May 24–28, 2004. Ed. Wann‐Sheng Horng et al. Taichung: Department of Mathematics Education, National Taichung Teachers College, 2004. 57–80.Google Scholar
  19. ‐‐‐. Traditional Vietnamese Mathematics: The case of Lương Thế Vinh (1441–1496?) and his treatise Toan phap dai thanh (Great Compendium of Mathematical Methods). Traditions of Knowledge in Southeast Asia. Ed. U Kyi Win. Myanmar Historical Commission, Yangon: 2005, part 3. 156–77.Google Scholar
  20. ‐‐‐. State mathematics education in traditional China and Vietnam: formation of ‘mathematical hagiography’ of Lương The Vinh (1441–1496?). Confucianism in Vietnam. Ed. Trinh Khac Manh and Phan Van Cac. Hanoi: Social sciences publishing house, 2006, pp. 272–309.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg New York 2008

Authors and Affiliations

  • Alexei Volkov

There are no affiliations available