Geometry in Chinese Mathematics

  • Jean‐Claude Martzloff
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4425-0_8613

The earliest evidence of a systematic organization of regular shapes reproduced on material objects found in China dates from the third millennium BCE or even earlier. Painted motifs displaying geometrical patterns such as symmetrical arrangements of triangles, lozenges, or circles have been found on pottery pieces unearthed at Banpo 1(near present‐day Xi'an) and other archaeological sites. These designs demonstrate an early interest in spatial ordering and are perhaps at the origin of subsequent developments even though we are now unable to establish any continuity between prehistoric and historic Chinese mathematics. Nonetheless, several Chinese myths and legends attest that the plumb line, the compass, the carpenter square, and the gnomon (a post of standard height) were commonly used in Zhou China (1121–256 BCE). This last instrument, in particular, was considered so important that the Chinese began founding their astronomical and calendrical conceptions on the determination of...

This is a preview of subscription content, log in to check access.

References

  1. Ang Tian Se. Chinese Interest in Right‐Angled Triangles. Historia Mathematica 5.3 (1987): 253–66.Google Scholar
  2. Ang Tian Se and F. J. Swetz. A Chinese Mathematical Classic of the Third Century: The Sea Island Manual of Liu Hui. Historia Mathematica 13 (1986): 99–117.Google Scholar
  3. Cullen, Christopher. Astronomy and Mathematics in Ancient China: The Zhou bi suan jing. Cambridge: Cambridge University Press, 1996.Google Scholar
  4. Dijksterhuis, E. J. Archimedes. Trans. C. Dikshoorn. Princeton, New Jersey: Princeton University Press, 1987.Google Scholar
  5. Elia, Pasquale d'. Prezentazione della Prima Traduzione Cinese di Euclide. Monumenta Serica 15 (1956): 161–202.Google Scholar
  6. Graham, A. C. Later Mohist Logic Ethics and Science. Hong Kong/London: The Chinese University Press/School of Oriental and African Studies, 1978.Google Scholar
  7. Ho Peng‐Yoke. Liu Hui. Dictionary of Scientific Biography. Ed. Charles C. Gillipsie. Vol. 8. New York: Scribners, 1973. 418–25.Google Scholar
  8. Kokomoor, F. W. The Distinctive Features of Seventeenth Century Geometry. Isis 10.34 (1928): 367–415.Google Scholar
  9. Lam Lay Yong and Ang Tian Se. Circle Measurements in Ancient China. Historia Mathematica 13 (1986): 325–40.Google Scholar
  10. Lam Lay Yong and Shen Kangshen. Right‐Angled Triangles in Ancient China. Archive for the History of Exact Sciences 30.2 (1984): 87–112.Google Scholar
  11. Le Blanc and Charles Rémi Mathieu, ed. and trans. Philosophes taoïstes, II, Huainan zi. Paris: Gallimard, Bibliothèque de la Pléïade, 2003.Google Scholar
  12. Li Di. Zhongguo shuxueshi jianbian (A Concise History of Chinese Mathematics). Shenyang: Liaoning Renmin Chubanshe, 1984.Google Scholar
  13. Libbrecht, Ulrich. Chinese Mathematics in the Thirteenth Century: The Shu‐shu chiu‐chang of Ch'in Chiu‐shao (i.e. Qin Jiushao). Cambridge, Massachusetts: MIT Press, 1973.Google Scholar
  14. Martzloff, Jean‐Claude. Histoire des mathématigues chinoises. Paris: Masson, 1987. English Translation by Stephen S. Wilson: History of Chinese Mathematics. New York: Springer‐Verlag, 1995.Google Scholar
  15. ‐‐‐. Eléments de réflexion sur les réactions chinoises à la géometrie euclidienne à la fin du XVIIe siècle. Le Jihe lunyue de Du Zhigeng vu principalement à partir de la préface de I'auteur et de deux notices bibliographiques rédigées par des lettrés illustres. Historia Mathematica 20.2 (1993): 160–79 and 20.3 (1993): 460–3.Google Scholar
  16. ‐‐‐. Space and Time in Chinese Texts of Astronomy and of Mathematical Astronomy in the Seventeenth and Eighteenth Centuries. Chinese Science 11 (1993–1994): 66–92.Google Scholar
  17. van der Waerden, B. L. Geometry and Algebra in Ancient Civilizations. Berlin: Springer‐Verlag, 1983.Google Scholar
  18. Wagner, D. B. Liu Hui and Tsu Keng‐chih on the Volume of a Sphere. Chinese Science 3 (1978): 59–79.Google Scholar
  19. ‐‐‐. An Early Derivation of the Volume of a Pyramid: Liu Hui, Third Century AD. Historia Mathematica 6 (1979): 164–88.Google Scholar
  20. Wu Wenjun, ed. Jiuzhang suanshu yu Liu Hui (Liu Hui and the Jiuzhang suanshu). Beijing: Beijing Shifan Daxue Chubanshe, 1982.Google Scholar
  21. Ziggelaar, August. Le physicien Ignace‐Gaston Pardies S.J. Odense: Odense University Press, 1971.Google Scholar

Links

  1. The Journal Sciamus: http://www.sciamus.org.
  2. Original text of Cavalieri's Geometria Indivisibilibus: http://www.brunelleschi.imss.fi.it/bd/.

Copyright information

© Springer-Verlag Berlin Heidelberg New York 2008

Authors and Affiliations

  • Jean‐Claude Martzloff

There are no affiliations available