Skip to main content

Climap

  • Reference work entry

Part of the Encyclopedia of Earth Sciences Series book series (EESS)

Introduction

Ice ages, those times when great ice sheets spread across Northern Hemisphere continents, have been the subject of scientific and public interest for over 150 years. By the 1960s, the aerial extent of some ice ages had been established through the mapping of the rocky debris left behind by the retreating ice and stratigraphic analyses of these deposits, which provided evidence of multiple ice advances and retreats. The accepted number of such advances was four, all occurring within the Pleistocene Epoch. Studies of deep-sea sediments, which have an advantage over the erosion-plagued record of glaciations on land because of their temporal continuity and spatial coverage, accelerated during this decade, providing further evidence of multiple major climate changes. This evidence was supplied through studies of the calcareous (limy) shells of microscopic plankton (foraminifera). When alive, these one-celled creatures are delicately adapted to the physical properties of the...

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4020-4411-3_39
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   499.99
Price excludes VAT (USA)
  • ISBN: 978-1-4020-4411-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   599.99
Price excludes VAT (USA)
Figure C40
Figure C41
Figure C42

Bibliography

  • Adhemar, J.A., 1842. Revolutions de la mer. Privately published, Paris.

    Google Scholar 

  • Berger, A., 1977. Support for the astronomical theory of climate change. Nature, 269, 44–45.

    Google Scholar 

  • Broecker, W.L., and van Donk, J., 1970. Insolation changes, ice volumes and the δ18O record in deep-sea cores. Rev. Geophys. Space phys., 2, 169–197.

    Google Scholar 

  • CLIMAP, 1976. The surface of the ice age Earth. Science, 191, 1131–1137.

    Google Scholar 

  • CLIMAP Project Members, 1981. Seasonal Reconstructions of the Earth’s Surface at the Last Glacial Maximum. Boulder, CO: Geological Society of America, Map and chart Series, 36, 36pp.

    Google Scholar 

  • CLIMAP Project Members, 1984. The Last Interglacial Ocean. Quaternary Res., 21, 123–224.

    Google Scholar 

  • Cline, R.M., and Hays, J.D. (eds.), 1976. Investigation of Late Quaternary Paleoceanography and Paleoclimatology. 145, Boulder, CO: Geological Society of America, Geological Society of America Memoir 464pp.

    Google Scholar 

  • Cox, A., Doell, R.R., and Dalrymple, G.B., 1964. Reversals of the Earth’s magnetic field. Science, 144, 1537–1543.

    Google Scholar 

  • Croll, J., 1864. On the physical cause of the change of climate during geological epochs. Philos. Mag., 28, 121–137.

    Google Scholar 

  • Damuth, J.F., and Fairbridge, R.W., 1970. Equatorial Atlantic Deep-Sea arkosic sands and ice age aridity in tropical South America. Geol. Soc. Am. Bull., 81, 189–206.

    Google Scholar 

  • Dansgaard, W., 1964. Stable isotopes in precipitation. Tellus, 4, 436–468.

    Google Scholar 

  • Denton, G.H., and Hughes, T.J. (eds.), 1981. The Last Great Ice Sheets. New York: Wiley-Interscience, 484p.

    Google Scholar 

  • Emiliani, C., 1955. Pleistocene temperatures. J. Geol., 63, 538–578.

    Google Scholar 

  • Epstein, S., Buchsbaum, R., Lowenstam, H., and Urey, H.C., 1951. Carbonate-water isotopic temperature scale. Geol. Soc. Am. Bull., 62, 417–425.

    Google Scholar 

  • Ericson, D.B., and Wollin, G., 1968. Pleistocene climates and chronology in deep-sea sediments. Science, 162, 1227–1234.

    Google Scholar 

  • Ewing, W.M., and Donn, W.L., 1956. A theory of ice ages. Science, 123, 1061–1066.

    Google Scholar 

  • Gates, W.L., 1976. The numerical simulation of ice-age climate with a general circulation model. J. Atmos. Sci., 33, 1844–1873.

    Google Scholar 

  • Harrison, C.G.A., and Funnel, B.M., 1964. Relationship between paleomagnetic reversals and micropaleontology in two late Cenozoic cores from the Pacific Ocean. Nature (London), 204, 566.

    Google Scholar 

  • Hays, J.D., and Berggren, W.A., 1971. Quaternary boundaries and correlations. In Funnel, B.M., and Riedel, W.R. (eds.), Micropaleontology of the Oceans. Cambridge, UK: Cambridge University Press, pp. 669–691.

    Google Scholar 

  • Hays, J.D., and Shackelton, N.J., 1976. Globally synchronous extinction of the radiolarian Stylatractus universus. Geology, 4, 649–652.

    Google Scholar 

  • Hays, J.D., Saito, T., Opdyke, N.D., and Burckle, L.H., 1969. Pliocene-Pleistocene sediments of the Equatorial Pacific: Their paleomagnetic, biostratigrapic and climatic record. Geol. Soc. Am. Bull., 80, 1481–1514.

    Google Scholar 

  • Hays, J.D., Lazano, J, Shackelton, N., and Irving, G., 1976a. Reconstruction of the Atlantic and western Indian Ocean sectors of the 18,000 bp Antarctic Ocean. In Cline, R.M., and Hays, J.D. (ed.), Investigations of Late Quaternary Paleoceanography and Paleoclimatology. 145, Boulder, CO: Geological Society of America, Geological Society of America Memoir, 337–372.

    Google Scholar 

  • Hays, J.D., Imbrie, J., and Shackelton, N.J., 1976b. Variations of the Earth’s orbit: Pacemaker of the Ice Ages. Science, 194, 1121–1132.

    Google Scholar 

  • Imbrie, J., and Imbrie, J.Z., 1980. Modeling the climatic response to orbital variations. Science, 207, 943–953.

    Google Scholar 

  • Imbrie, J., and Kipp, N.G., 1971. A new micropaleontological method for quantitative micropaleontology: Application to a late Pleistocene Caribbean core. In Turekian, K.K. (ed.), Late Cenozoic Ice Ages. New Haven, CT: Yale University Press, pp. 71–181.

    Google Scholar 

  • Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A.C., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L., and Shackelton, N.J., 1984. The orbital theory of Pleistocene climate: Support from a revised chronolology of the marine δO18 record. In Berger, et al., (ed.), Milankovich and Climate. Norwell, MA: D. Riedel, pp. 269–305.

    Google Scholar 

  • Kemp, W.C., and Egger, D.T., 1967. The relationship among sequences with application to geological data. J. Geophys. Res., 72, 739.

    Google Scholar 

  • Kominz, M.A., Heath, G.R., Ku, T.L., and Pisias, N.G., 1979. Brunhes time scales and the interpretation of climatic change. Earth Planet. Sci. Lett., 45, 394–410.

    Google Scholar 

  • Manabe, S., and Hahn, D.G., 1977. Simulation of the tropical climate of the ice age. J. Geophs. Res., 82, 3889–3911.

    Google Scholar 

  • Mankinen, E.A., and Dalrymple, G.B., 1979. Revised geomagnetic polarity time scale for the interval 0–5 m.y. bp. J. Geophys. Res., 84, 615.

    Google Scholar 

  • Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C., and Shackelton, N.J., 1987. Age dating and orbital theory of the ice ages: Development of a high-resolution, 0–300,000 year chronostratigraphy. Quaternary Res., 27, 1–27.

    Google Scholar 

  • McIntyre, A., Kipp, N.G., Be, A.W.H., Crowley, T., Kellogg, T., Gardner, J.V., Prell, W., and Ruddiman, W.F., 1976. Glacial North Atlantic 18,000 years ago: A CLIMAP reconstruction. In Cline, R.M., and Hays, J.D. (ed.), Investigations of Late Quaternary Paleoceanography and Paleoclimatology. 145, Boulder, CO: Geological Society of America, Geological Society of America Memoir 43–76.

    Google Scholar 

  • Milankovitch, M., 1920. Theorie mathematique des phenomenes thermiques produits per la radiation solaire. Paris: Gauthier-Villara.

    Google Scholar 

  • Mintz, Y., 1968. Very Long-term Global Integration of the Primitive Equations of Atmospheric Motion: An Experiment in Climate Simulation. 8, Boston, MA: American Meteorological Society. Meteorological Monographs, 20–36.

    Google Scholar 

  • Ninkovich, D., and Shackelton, N.J., 1975. Distribution and stratigraphic position and age of ash layer “L” in the Panama Basin region. Earth Planet. Sci. Lett., 27, 20–34.

    Google Scholar 

  • Opdyke, N.D., and Foster, J.H., 1970. Paleomagnetism of cores from the North Pacific. In Hays, J.D. (ed.), Geological Investigations of the North Pacific. 126, Boulder, CO: Geological Society of America. Geological Society of America Memoir, 126, 83–119.

    Google Scholar 

  • Opdyke, N.D., Glass, B., Hays, J.D., and Foster, J., 1966. Paleomagnetic study of Antarctic deep-sea cores. Science, 154, 349–357.

    Google Scholar 

  • Robertson, J.H., 1975. Glacial to Interglacial Oceanographic Changes in the Northwest Pacific, including a Continuous Record of the Last 400,000 Years. PhD Thesis, Columbia University, New York, 355pp.

    Google Scholar 

  • Sanchetta, C., Imbrie, J., and Kipp, N.G., 1973. Climatic record of the past 130,000 years in North Atlantic deep-sea core V23–82: Correlation with the terrestrial record. Quaternary Res., 3, 110–116.

    Google Scholar 

  • Sellers, W.D., 1969. A global climate model based on the energy balance of the Earth-atmosphere system. J. Appl. Meteorol., 3, 392–400.

    Google Scholar 

  • Shackelton, N.J., and Opdyke, N.D., 1973. Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28–238: Oxygen isotope temperatures and ice volumes on a 105 and 106 timescales. Quaternary Res., 3, 39–55.

    Google Scholar 

  • Shackelton, N.J., and Opdyke, N.D., 1976. Oxygen-isotope and paleomagnetic stratigraphy of Pacific core V28–239 late Pliocene to latest Pleistocene. In Cline, R.M., and Hays, J.D. (eds.), Investigations of Late Quaternary paleoceanography and paleoclimatology. Geol. Soc. Amer. Memoir, 145, 449–464.

    Google Scholar 

  • Smagorinsky, J., 1963. General circulation experiments with primitive equations: I the basic experiment. Mon. weather rev., 91, 99.

    Google Scholar 

  • Suarez, M.J., and Held, I.M., 1976. Modeling climatic response to orbital parameter variations. Nature, 263, 46–47.

    Google Scholar 

  • Suarez, M.J., and Held, I.M., 1979. The sensitivity of an energy balance climate model to variations in the orbital parameters. J. Geophys. Res., 84, 4825–4836.

    Google Scholar 

  • Thierstein, H.R., Geitzenauer, K.R., Molfino, B., and Shackelton, N.J., 1977. Global synchroneity of late Quaternary coccolith datum levels: Validation by oxygen isotopes. Geology, 5, 400–404.

    Google Scholar 

  • Van den Heuvel, E.P.J., 1966. On the precession as a cause of Pleistocene variations of the Atlantic Ocean water temperatures. Geophys. J.R. Astron. Soc., 11, 323–336.

    Google Scholar 

  • Wilson, A.T., 1964. Origin of ice ages: An ice shelf theory for Pleistocene glaciation. Nature, 201, 147–149.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag

About this entry

Cite this entry

Hays, J.D. (2009). Climap. In: Gornitz, V. (eds) Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4411-3_39

Download citation