Encyclopedia of Paleoclimatology and Ancient Environments

2009 Edition
| Editors: Vivien Gornitz

Carbon Cycle

Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4411-3_28
  • 905 Downloads

Historical background of the carbon cycle

The discovery that plants use carbon dioxide for growth in sunlight and return it to the atmosphere in darkness must have been the first scientific observation of part of the carbon cycle. The discovery of carbon dioxide as a gas that forms by fermentation and burning of charcoal, under the name of spiritus silvestris, is attributed to Jan Baptista (or Baptist) van Helmont, a man of medicine, alchemy, and early chemistry in the then Spanish Netherlands, in the first half of the 1600s (e.g., Graham, 1974). Presentation of the first general scheme of the carbon and nitrogen cycles was attributed to the French chemist, Jean Baptiste André Dumas, in 1841 (Rankama and Sahama, 1950, p. 535). Dumas (1842) described the cycle of CO2consumption and production by respiration, pointing to the sources of “carbonic acid” in the air and soil where it forms from decomposition of manure or organic fertilizers. He also pointed out that the Earth’s primordial...

This is a preview of subscription content, log in to check access.

Bibliography

  1. Arrhenius, S., 1896. On the influence of carbonic acid in the air upon the temperature of the ground. Phil. Mag., 5th ser., 41, 237–276.Google Scholar
  2. Barker, D.S., 1997. Carbonatites. McGraw-Hill Encycl. Sci. Technol., 8th ed., vol. 3, New York, NY: McGraw-Hill, pp. 239–240.Google Scholar
  3. Bassham, J.A., 1974. Photosynthesis. Encycl. Brit., Macropaedia, vol. 14, Chicago, IL: University of Chicago Press, pp. 365–373.Google Scholar
  4. Berner, R.A., and Canfield, D.L., 1989. A new model for atmospheric oxygen over Phanerozoic time. Am. J. Sci., 289, 333–361.Google Scholar
  5. Berner, R.A., and Kothavala, Z., 2001. Geocarb III: A revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci., 301, 182–204.Google Scholar
  6. Berner, R.A., and Maasch, K.A., 1996. Chemical weathering and controls on atmospheric O2 and CO2: Fundamental principles were enunciated by J.J., Ebelmen, in 1845. Geochim. Cosmochim. Acta, 60, 1633–1637.Google Scholar
  7. Clark, I.D., and Fritz, P., 1997. Environmental Isotopes in Hydrology. New York, NY: Lewis Publishers, 328pp.Google Scholar
  8. Dumas, J., 1842. Essai de Statique Chimique des Êtres Organisés. 2ème édit. Fortin, Masson, Paris, 4  +  88pp.Google Scholar
  9. Friedman, I., and O’Neil, J.R., 1977. Compilation of stable isotope fractionation factors of geochemical interest. In Fleischer, M. (ed.), Data of Geochemistry. 6th ed, U.S. Geol. Survey Prof. Pap. 440–KK.Google Scholar
  10. Gaffron, H., 1964. Photosynthesis. Encycl. Brit., vol. 17, Chicago, IL: University of Chicago Press, pp. 855–856B.Google Scholar
  11. Graham, L., 1974. Heat. In Encyclopedia Britannica, Macropaedia, vol. 8, pp. 700–706; Micropaedia, vol. 4, p. 1007. Chicago, IL: University of Chicago Press.Google Scholar
  12. Hayes, J.M., Strauss, H., and Kaufman, A.J., 1999. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma, Chem. Geol., 161, 103–125.Google Scholar
  13. Kvenvolden, K.A., 1988. Methane — a major reservoir of carbon on a shallow geosphere? Chem. Geol., 71, 41–51.Google Scholar
  14. Kvenvolden, K.A., and Lorenson, T.D., 2001. Global occurrences of natural gas hydrates. In Paull, C.E., and Dillon, W.P. (eds.), Natural Gas Hydrates: Occurrence, Distribution, and Detection. AGU Geophys. Monograph Series, vol. 124, pp. 3–18.Google Scholar
  15. Li, Y.-H., 2000. A Compendium of Geochemistry: From Solar Nebula to the Human Brain. Princeton, NJ: Princeton University Press, xiv  +  475pp.Google Scholar
  16. Locklair, R.E., and Lerman, A., 2005. A model of Phanerozoic cycles of carbon and calcium in the global ocean: Evaluation and constraints on ocean chemistry and input fluxes. Chem. Geol., 217, 113–126.Google Scholar
  17. Lotka, A.J., 1925. Elements of Physical Biology. Baltimore, MD: Williams & Wilkins, xxx  +  460pp. Also published as Elements of Mathematical Biology, 1956. New York, NY: Dover, pp. xxx  +  465.Google Scholar
  18. Mackenzie, F.T., 2002. Our Changing Planet. Upper Saddle River, NJ: Prentice Hall, xii  +  580pp.Google Scholar
  19. Mackenzie, F.T., and Lerman, A., 2006. Carbon in the Geobiosphere. Dordrecht, The Netherlands: Springer xxii  +  402pp.Google Scholar
  20. Mackenzie, F.T., and Morse, J.W., 1992. Sedimentary carbonates through Phanerozoic time. Geochim. Cosmochim. Acta, 56, 3281–3295.Google Scholar
  21. Meyer, B.S., 1964. Plant Physiology. Encycl. Brit., vol. 18, Chicago, IL: University of Chicago Press, pp. 16–31.Google Scholar
  22. Mohr, F., 1875. Geschichte der Erde. 2. Aufl. Bonn, Germany: Verlag Max Cohen & Sohn, xx  +  554pp.Google Scholar
  23. Mojzsis, S.J., Arrhenius G., McKeegan, K.D., Harrison, T.M., Nutman, A.P., and Friend, C.R.L., 1996. Evidence for life on Earth by 3800 Myr. Nature, 384, 55–59.Google Scholar
  24. Mook, W.G., Bommerson, J.C., and Staverman, W.H., 1974. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett., 22, 169–176.Google Scholar
  25. O’Leary, M.H., 1988. Carbon isotopes in photosynthesis. Bioscience, 38, 328–335.Google Scholar
  26. Poldervaart, A., 1955. Chemistry of the Earth’s surface. In Poldervaart, A. (ed.), Crust of the Earth, Geol. Soc. Am. Spec. Pap., 62, pp. 119–144.Google Scholar
  27. Rankama, K., and Sahama, Th.G., 1950. Geochemistry. Chicago, IL: Univ. Chicago Press, xvi  +  912pp.Google Scholar
  28. Redfield, A.C., Ketchum, B.H., and Richards, F.A., 1963. The influence of organisms on the composition of seawater. In Hill, M.N. (ed.), The Sea, vol. 2, New York, NY: Wiley, pp. 26–77.Google Scholar
  29. Rosing, M.T., 1999. 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science, 283, 674–676.Google Scholar
  30. Rubey, W.W., 1951. Geologic history of seawater, an attempt to state the problem. Geol. Soc. Am. Bull., 62, 1111–1147.Google Scholar
  31. Rubey, W.W., 1955. Development of the hydrosphere and atmosphere, with special reference to probable composition of the early atmosphere. In Poldervaart, A. (ed.), Crust of the Earth, Geological Society of America, Special Paper, vol 62, pp. 631–650.Google Scholar
  32. Rubinson, M., and Clayton, R.N., 1969. Carbon-13 fractionation between aragonite and calcite. Geochim. Cosmochim. Acta, 33, 997–1002.Google Scholar
  33. Salomons, W., and Mook, W.G., 1986. Isotope geochemistry of carbonates in the weathering zone. In Fritz, P., and Fontes, J. Ch. (eds.), Handbook of Environmental Isotope Geochemistry, vol. 2, The Terrestrial Environment, Amsterdam, The Netherlands: Elsevier, pp. 239–269.Google Scholar
  34. Thode, H.G., Shima, M., Rees, C.E., and Krishnamurty, K.V., 1965. Carbon-13 isotope effects in systems containing carbon dioxide, bicarbonate, carbonate, and metal ions. Can. J. Chem., 43, 582–595.Google Scholar
  35. Urey, H.C., 1952. The Planets: Their Origin and Development. New Haven, Conn.: Yale University Press, xvii+245pp.Google Scholar
  36. Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G.A.F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O.G., and Strauss, H., 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol., 161, 59–88.Google Scholar
  37. Ver, L.M.B., Mackenzie, F.T., and Lerman, A., 1999. Biogeochemical responses of the carbon cycle to natural and human perturbation: Past, present, and future. Am. J. Sci., 299, 762–801.Google Scholar
  38. Vogel, J.C., Grootes, P.M., and Mook, W.G., 1970. Isotopic fractionation between gaseous and dissolved carbon dioxide. Zeitschr. Physik, 230, 225–238.Google Scholar
  39. Walker, J.C.G., 1977. Evolution of the Atmosphere. New York, NY: Macmillan Publishing, xiv+318pp.Google Scholar
  40. Wallmann, K., 2004. Impact of atmospheric CO2 and galactic cosmic radiation on Phanerozoic climate change and the marine δ18O record. Geochem., Geophys. Geosyst. doi: 10.1029/2003GC000683.Google Scholar
  41. Whitmarsh, J., and Govindjee, 1995. The photosynthetic process. In Singhal, G.S., Renger, G., Soppory, S.K., Irrgang, K.-D., and Govindjee (eds.), Concepts in Photobiology: Photosynthesis and Photomorphogenesis. Dordrecht, The Netherlands: Kluwer Academic, pp. 11–51.Google Scholar
  42. Wilkinson, B.H., and Algeo, T.J., 1989. Sedimentary carbonates record of calcium and magnesium cycling. Am. J. Sci., 289, 1158–1194.Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

There are no affiliations available