Encyclopedia of Paleoclimatology and Ancient Environments

2009 Edition
| Editors: Vivien Gornitz

Late Quaternary-Holocene Vegetation Modeling

  • Jed O. Kaplan
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4411-3_126


Vegetation modeling is central to understanding the role that plants have played in shaping the Earth’s atmospheric composition and climate in the past, and the potential responses and feedbacks of vegetation to future climate changes. Over the past decade, a series of global vegetation models have been applied to the subject of late Quaternary and Holocene climate change. Because a vegetation model provides a complete picture of the Earth’s land surface, and because it produces a diagnostic that can be directly compared to paleo-observations (e.g., plant assemblages), vegetation models have been particularly useful for evaluating the output of general circulation models (GCMs). Progress in vegetation modeling has enabled the researcher to simulate vegetation patterns with more detail, and to evaluate other variables with paleoproxies, such as dust fluxes, methane emissions, and carbon storage. Current directions in late Quaternary and Holocene vegetation modeling include...

This is a preview of subscription content, log in to check access.


  1. Bradley, R.S., 2000. Past global changes and their significance for the future. Quaternary Sci. Rev., 19, 391–402.CrossRefGoogle Scholar
  2. Chappellaz, J.A., Fung, I.Y., and Thompson, A.M., 1993. The atmospheric CH4 increase since the Last Glacial Maximum (1). Source estimates. Tellus., B 45, 228–241.CrossRefGoogle Scholar
  3. CLIMAP, 1981. Seasonal Reconstructions of the Earth’s Surface at the Glacial Maximum. Boulder, CO: Geological Society of America.Google Scholar
  4. Cowling, S.A., 1999. Simulated effects of low atmospheric CO2 on structure and composition of North American vegetation at the Last Glacial Maximum. Glob. Ecol. Biogeogr., 8, 81–93.CrossRefGoogle Scholar
  5. Cox, P.M., Betts, R.A., Jones, C.D., Spall, S.A., and Totterdell, I.J., 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–187.CrossRefGoogle Scholar
  6. de Noblet-Ducoudré, N., Claussen, R., and Prentice, C., 2000. Mid-Holocene greening of the Sahara: First results of the GAIM 6000 year bp Experiment with two asynchronously coupled atmosphere/biome models. Clim. Dyn., 16, 643–659.CrossRefGoogle Scholar
  7. Denton, G.H., and Hughes, T.J., 1981. The Last Great Ice Sheets. New York: Wiley.Google Scholar
  8. Doherty, R., Kutzbach, J., Foley, J., and Pollard, D., 2000. Fully coupled climate/dynamical vegetation model simulations over northern Africa during the mid-Holocene. Clim. Dyn., 16, 561–573.CrossRefGoogle Scholar
  9. Elias, S.A., 2001. Mutual climatic range reconstructions of seasonal temperatures based on Late Pleistocene fossil beetle assemblages in Eastern Beringia. Quaternary Sci. Rev., 20, 77–91.CrossRefGoogle Scholar
  10. Fairbanks, R.G., 1989. A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the younger dryas event and deep-ocean circulation. Nature, 342, 637–642.CrossRefGoogle Scholar
  11. Foley, J.A., 1994. The sensitivity of the terrestrial biosphere to climatic change: A simulation of the middle Holocene. Global Biogeochem. Cycles, 8, 505–525.CrossRefGoogle Scholar
  12. François, L., Kaplan, J., Otto, D., Roelandt, C., Harrison, S.P., Prentice, I.C., Warnant, P., and Ramstein, G., 2000. Comparison of vegetation distributions and terrestrial carbon budgets reconstructed for the Last Glacial Maximum with several biosphere models. In Braconnot, P. (ed.), Paleoclimate Modeling Intercomparison Project (PMIP). Canada: La Huardière, WMO/WCRP, WCRP-111, pp. 141–145.Google Scholar
  13. François, L.M., Goddéris, Y., Warnant, P., Ramstein, G., de Noblet, N., and Lorenz, S., 1999. Carbon stocks and isotopic budgets of the terrestrial biosphere at mid-Holocene and Last Glacial Maximum times. Chem. Geol., 159, 163–189.CrossRefGoogle Scholar
  14. Friedlingstein, P., Delire, C., Muller, J.F. and Gerard, J.C., 1992. The climate induced variation of the continental biosphere - a model simulation of the Last Glacial Maximum. Geophys. Res. Lett., 19, 897–900.CrossRefGoogle Scholar
  15. Friedlingstein, P., Prentice, K.C., Fung, I.Y., John, J.G., and Brasseur, G.P., 1995. Carbon-biosphere-climate interactions in the last glacial maximum climate. J. Geophys. Res-Atmos., 100, 7203–7221.CrossRefGoogle Scholar
  16. Ganopolski, A., Kubatzki, C., Claussen, M., Brovkin, V., and Petoukhov, V., 1998. The influence of vegetation-atmosphere-ocean interaction on climate during the mid-Holocene. Science, 280, 1916–1919.CrossRefGoogle Scholar
  17. Guiot, J., Torre, F., Cheddadi, R., Peyron, O., Tarasov, P., Jolly, D., and Kaplan, J.O., 1999. The climate of the Mediterranean basin and of Eurasia of the Last Glacial Maximum as reconstructed by inverse vegetation modelling and pollen data. Ecologia mediterranea, 25, 193–204.Google Scholar
  18. Harrison, S.P., Kutzbach, J.E., and Behling, P., 1992. General circulation models, paleoclimatic data and last interglacial climates. Quaternary Int., 10–12, 231–242.Google Scholar
  19. Harrison, S.P., Jolly, D., Laarif, F., Abe-Ouchi, A., Dong, B., Herterich, K., Hewitt, C., Joussaume, S., Kutzbach, J.E., Mitchell, J., de Noblet, N., and Valdes, P., 1998. Intercomparison of simulated global vegetation distributions in response to 6 kybp orbital forcing. J. Clim., 11, 2721–2742.CrossRefGoogle Scholar
  20. Harrison, S.P., Kohfeld, K.E., Roelandt, C., and Claquin, T., 2001. The role of dust in climate changes today, at the Last Glacial Maximum and in the future. Earth-Sci. Rev., 54, 43–80.CrossRefGoogle Scholar
  21. Jolly, D. and Haxeltine, A., 1997. Effect of low glacial atmospheric CO2 on tropical African montane vegetation. Science, 276, 786–788.CrossRefGoogle Scholar
  22. Joussaume, S., and Taylor, K.E., 1995. Status of the Paleoclimate Modeling Intercomparison Project (PMIP). In Gates, W.L. (ed.), Proceedings of the First International AMIP Scientific Conference, May 15–19, 1995. Monterey, CA: WMO/WCRP, WCRP 92, WMO/TD-No. 732, pp. 425–430.Google Scholar
  23. Joussaume, S., and Taylor, K.E., 2000. The paleoclimate modeling intercomparison project. In Braconnot, P. (ed.), Paleoclimate Modeling Intercomparison Project (PMIP). La Huardière, Canada: WMO/WCRP, WCRP-111, WMO/TD-No. 1007, pp. 9–24.Google Scholar
  24. Kaplan, J.O., 2001. Geophysical Applications of Vegetation Modeling, Ph.D. Thesis. Lund: Lund University, 132pp.Google Scholar
  25. Kaplan, J.O., 2002. Wetlands at the Last Glacial Maximum: Distribution and methane emissions. Geophys. Res. Lett., 29, 3.1–3.4.Google Scholar
  26. Kaplan, J.O., Prentice, I.C., Knorr, W., and Valdes, P.J., 2002. Modeling the dynamics of terrestrial carbon storage since the Last Glacial Maximum. Geophys. Res. Lett., 29, 31.1–31.4.Google Scholar
  27. Kaplan, J.O., Bigelow, N.H., Bartlein, P.J., Christensen, T.R., Cramer, W., Harrison, S.P., Matveyeva, N.V., McGuire, A.D., Murray, D.F., Prentice, I.C., Razzhivin, V.Y., Smith, B., Walker, D.A., Anderson, P.M., Andreev, A.A., Brubaker, L.B., Edwards, M.E., and Lozhkin, A.V., 2003. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. J. Geophys. Res-Atmos., 108, (D19), 8171, doi:10.1029/2002JD002559.CrossRefGoogle Scholar
  28. Kohfeld, K.E., and Harrison, S.P., 2000. How well can we simulate past climates? Evaluating the models using global palaeoenvironmental datasets. Quaternary Sci. Rev., 19, 321–346.CrossRefGoogle Scholar
  29. Kubatzki, C., and Claussen, M., 1998. Simulation of the global biogeophysical interactions during the last glacial maximum. Clim. Dyn., 14, 461–471.CrossRefGoogle Scholar
  30. Kutzbach, J., Bonan, G., Foley, J., and Harrison, S.P., 1996a. Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene. Nature, 384, 623–626.CrossRefGoogle Scholar
  31. Kutzbach, J.E., Bartlein, P.J., Foley, J.A., Harrison, S.P., Hostetler, S.W., Liu, Z., Prentice, I.C., and Webb III, T., 1996b. Potential role of vegetation feedback in the climate sensitivity of high-latitude regions: A case study at 6000 years bp. Global Biogeochem. Cycles, 10, 727–736.CrossRefGoogle Scholar
  32. Levis, S., Foley, J.A., and Pollard, D., 1999. Potential high-latitude vegetation feedbacks on CO2-induced climate change. Geophys. Res. Lett., 26, 747–750.CrossRefGoogle Scholar
  33. MacDonald, G.M., Velichko, A.A., Kremenetski, C.V., Borisova, O.K., Goleva, A.A., Andreev, A.A., Cwynar, L.C., Riding, R.T., Forman, S.L., Edwards, T.W.D., Aravena, R., Hammarlund, D., Szeicz, J.M., and Gattaulin, V.N., 2000. Holocene treeline history and climate change across northern Eurasia. Quaternary Res., 53, 302–311.CrossRefGoogle Scholar
  34. Mitchell, J.F.B., Grahame, N.S., and Needham, K.J., 1988. Climate simulations for 9000 years before present: seasonal variations and effect of the Laurentide ice sheet. J. Geophys. Res-Atmos., 93, 8283–8303.CrossRefGoogle Scholar
  35. Otto, D., Rasse, D., Kaplan, J., Warnant, P., and Francois, L., 2002. Biospheric carbon stocks reconstructed at the Last Glacial Maximum: comparison between general circulation models using prescribed and computed sea surface temperatures. Glob. Planet. Change, 33, 117–138.CrossRefGoogle Scholar
  36. Pinot, S., Ramstein, G., Harrison, S.P., Prentice, I.C., Guiot, J., Stute, M., Joussaume, S., 1999. Tropical paleoclimates at the Last Glacial Maximum: comparison of Paleoclimate Modeling Intercomparison Project (PMIP) simulations and paleodata. Clim. Dyn., 15, 857–874.CrossRefGoogle Scholar
  37. Prentice, I.C., Cramer, W., Harrison, S.P., Leemans, R., Monserud, R.A., and Solomon, A.M., 1992. A global biome model based on plant physiology and dominance, soil properties and climate. J. Biogeogr., 19, 117–134.CrossRefGoogle Scholar
  38. Prentice, I.C., Sykes, M.T., Lautenschlager, M., Harrison, S.P., Denissenko, O., and Bartlein, P.J., 1993. Modelling global vegetation patterns and terrestrial carbon storage at the last glacial maximum. Glob. Ecol. Biogeogr., 3, 67–76.CrossRefGoogle Scholar
  39. Prentice, I.C., Harrison, S.P., Jolly, D., and Guiot, J., 1998. The climate and biomes of Europe at 6000 yr bp: Comparison of model simulations and pollen-based reconstructions. Quaternary Sci. Rev., 17, 659–668.CrossRefGoogle Scholar
  40. Raynaud, D., Jouzel, J., Barnola, J.M., Chappellaz, J., Delmas, R.J., and Lorius, C., 1993. The ice record of greenhouse gases. Science, 259, 926–934.Google Scholar
  41. Ritchie, J.C., Cwynar, L.C., and Spear, R.W., 1983. Evidence from northwest Canada for an early Holocene Milankovitch thermal maximum. Nature, 305, 126–128.CrossRefGoogle Scholar
  42. Sitch, S., Smith, B., Prentice, I.C., Arneth, A., Bondeau, A., Cramer, W., Kaplan, J.O., Levis, S., Lucht, W., Sykes, M.T., Thonicke, K., and Venevsky, S., 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol., 9, 161–185.CrossRefGoogle Scholar
  43. Texier, D., de Noblet, N., Harrison, S.P., Haxeltine, A., Jolly, D., Joussaume, S., Laarif, F., Prentice, I.C., and Tarasov, P., 1997. Quantifying the role of biosphere-atmosphere feedbacks in climate change: coupled model simulations for 6000 years bp and comparison with palaeodata for northern Eurasia and northern Africa. Clim. Dyn., 13, 865–882.CrossRefGoogle Scholar
  44. Wright, H.E. Jr., Kutzbach, J.E., Webb, T., III, Ruddiman, W.F., Street-Perrott, F.A., and Bartlein, P.J., 1993. Global Climates since the Last Glacial Maximum. Minneapolis, MN: University of Minnesota Press, 569pp.Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jed O. Kaplan

There are no affiliations available