Encyclopedia of Geoarchaeology

2017 Edition
| Editors: Allan S. Gilbert

Data Visualization

  • Erich C. FisherEmail author
  • Curtis W. Marean
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4409-0_56


Graphic design; Information graphics (infographics)


Data visualization. Pictorial representations that are derived from qualitative or quantitative raw data to infer process or patterns in phenomena. Data visualization is closely linked to informatics, the collection, indexing, storage, retrieval, analysis, synthesis, and dissemination of data (He, 2003) and graphic design, which is the study of the technology, implementation, and social impact on human visual communication (Frascara, 1988).


Multimedia learning theory posits that the human brain creates dynamic associations between words, pictures, and auditory information to maximize learning capability (Mayer, 2001). Sociological studies of scientific practices have also showed that visualizations are a key part of the discovery process and the transmission of information among individuals (Lynch and Woolgar, 1990; Dibiase et al., 1992; Suárez, 2010; Allamel-Raffin, 2011; Gelfert, 2011). While words...

This is a preview of subscription content, log in to check access.

Supplementary material

Fisher Marean

MP4: 443504 kb


  1. Allamel-Raffin, C., 2011. The meaning of a scientific image: case study in nanoscience a semiotic approach. NanoEthics, 5(2), 165–173.CrossRefGoogle Scholar
  2. Barceló, J. A., 2001. Virtual reality and scientific visualization: working with models and hypotheses. International Journal of Modern Physics C, 12(4), 569–580.CrossRefGoogle Scholar
  3. Barceló, J. A., Forte, M., and Sanders, D. H., 2000. Virtual Reality in Archaeology. Oxford: Archaeopress. British Archaeological Reports, International Series, Vol. 843.Google Scholar
  4. Bernatchez, J. A., 2010. Taphonomic implications of orientation of plotted finds from Pinnacle Point 13B (Mossel Bay, Western Cape Province, South Africa). Journal of Human Evolution, 59(3–4), 274–288.CrossRefGoogle Scholar
  5. Boucher de Perthes, J., 1847. Antiquités celtiques et antédiluviennes. Mémoire sur l’industrie primitive et les arts à leur origine. Paris, 3 Vols: Treuttel et Wurtz.Google Scholar
  6. Conyers, L. B., 2004. Ground-Penetrating Radar for Archaeology, old edn. Walnut Creek, CA: AltaMira.Google Scholar
  7. Conyers, L. B., 2010. Ground-penetrating radar for anthropological research. Antiquity, 84(323), 175–184.CrossRefGoogle Scholar
  8. Conyers, L. B., and Leckebusch, J., 2010. Geophysical archaeology research agendas for the future: some ground-penetrating radar examples. Archaeological Prospection, 17(2), 117–123.Google Scholar
  9. Dalan, R. A., 2008. A review of the role of magnetic susceptibility in archaeogeophysical studies in the USA: recent developments and prospects. Archaeological Prospection, 15(1), 1–31.CrossRefGoogle Scholar
  10. Dibiase, D., MacEachren, A. M., Krygier, J. B., and Reeves, C., 1992. Animation and the role of map design in scientific visualization. Cartography and Geographic Information Systems, 19(4), 201–214. 265–266.CrossRefGoogle Scholar
  11. Dongarra, J. J., Meuer, H. W., Simon, H. D., and Strohmaier, E., 2010. Recent trends in high performance computing. In Bultheel, A., and Cools, R. (eds.), The Birth of Numerical Analysis. Singapore/Hackensack, NJ: World Scientific Publishing, pp. 93–107.Google Scholar
  12. Egenhofer, M. J., and Mark, D. M., 1995. Naive geography. In Frank, A. U., and Kuhn, W. (eds.), Spatial Information Theory: A Theoretical Basis for GIS. Berlin: Springer. Lecture Notes in Computer Sciences, Vol. 988, pp. 1–15.CrossRefGoogle Scholar
  13. Entwistle, J. A., McCaffrey, K. J. W., and Abrahams, P. W., 2009. Three-dimensional (3D) visualisation: the application of terrestrial laser scanning in the investigation of historical Scottish farming townships. Journal of Archaeological Science, 36(3), 860–866.CrossRefGoogle Scholar
  14. ESRI, 2011. ArcGIS 10.1 Common Questions: Lidar and 3D.Google Scholar
  15. Fisher, P., Dykes, J., and Wood, J., 1993. Map design and visualization. Cartographic Journal, 30(2), 136–142.CrossRefGoogle Scholar
  16. Fisher, E. C., Bar-Matthews, M., Jerardino, A., and Marean, C. W., 2010. Middle and Late Pleistocene paleoscape modeling along the southern coast of South Africa. Quaternary Science Reviews, 29(11–12), 1382–1398.CrossRefGoogle Scholar
  17. Frascara, J., 1988. Graphic design: fine art or social science? Design Issues, 5(1), 18–29.CrossRefGoogle Scholar
  18. Fuller, S. H., and Millett, L. I., 2011. Computing performance: game over or next level? Computer, 44(1), 31–38.CrossRefGoogle Scholar
  19. Gaffney, C., 2008. Detecting trends in the prediction of the buried past: a review of geophysical techniques in archaeology. Archaeometry, 50(2), 313–336.CrossRefGoogle Scholar
  20. Gelfert, A., 2011. Model-based representation in scientific practice: new perspectives. Studies in History and Philosophy of Science Part A, 42(2), 251–252.CrossRefGoogle Scholar
  21. Gillings, M., 2000. Plans, elevations and virtual worlds: the development of techniques for the routine construction of hyperreal simulations. In Barceló, J. A., Forte, M., and Sanders, D. H. (eds.), Virtual Reality in Archaeology. Oxford: Archaeopress. British Archaeological Reports, International Series, Vol. 843, pp. 59–70.Google Scholar
  22. Gillings, M., 2002. Virtual archaeologies and the hyper-real: or, what does it mean to describe something as virtually-real? In Fisher, P. F., and Unwin, D. (eds.), Virtual Reality in Geography. London: Taylor and Francis, pp. 17–34.Google Scholar
  23. Gillings, M., 2005. The real, the virtually real, and the hyperreal: the role of VR in archaeology. In Smiles, S., and Moser, S. (eds.), Envisioning the Past: Archaeology and the Image. Oxford: Blackwell, pp. 223–239.CrossRefGoogle Scholar
  24. Gooding, D. C., 2008. Envisioning explanations: the art in science. In Frischer, B., and Dakouri-Hild, A. (eds.), Beyond Illustration: 2D and 3D Digital Technologies as Tools for Discovery in Archaeology. Oxford: Archaeopress. British Archaeological Reports, International Series, Vol. 1805, pp. 1–19.Google Scholar
  25. Häberling, C., Bär, H., and Hurni, L., 2008. Proposed cartographic design principles for 3D maps: a contribution to an extended cartographic theory. Cartographica: The International Journal for Geographic Information and Geovisualization, 43(3), 175–188.CrossRefGoogle Scholar
  26. Harris, T. M., 2006. Scale as artifact: GIS, ecological fallacy, and archaeological analysis. In Lock, G. R., and Molyneaux, B. (eds.), Confronting Scale in Archaeology: Issues of Theory and Practice. New York: Springer, pp. 39–53.Google Scholar
  27. Hassan, F. A., 1978. Sediments in archaeology: methods and implications for palaeoenvironmental and cultural analysis. Journal of Field Archaeology, 5(2), 197–213.Google Scholar
  28. He, S., 2003. Informatics: a brief survey. Electronic Library, 21(2), 117–122.CrossRefGoogle Scholar
  29. Hegarty, M., Smallman, H. S., Stull, A. T., and Canham, M. S., 2009. Naïve cartography: how intuitions about display configuration can hurt performance. Cartographica: The International Journal for Geographic Information and Geovisualization, 44(3), 171–186.CrossRefGoogle Scholar
  30. Herries, A. I. R., and Fisher, E. C., 2010. Multidimensional GIS modeling of magnetic mineralogy as a proxy for fire use and spatial patterning: evidence from the Middle Stone Age bearing sea cave of Pinnacle Point 13B (Western Cape, South Africa). Journal of Human Evolution, 59(3–4), 306–320.CrossRefGoogle Scholar
  31. Höffler, T. N., 2010. Spatial ability: its influence on learning with visualizations – a meta-analytic review. Educational Psychology Review, 22(3), 245–269.CrossRefGoogle Scholar
  32. Jackson, R., MacDonald, L. W., and Freeman, K., 1994. Computer Generated Colour: A Practical Guide to Presentation and Display. Chichester/New York: Wiley.Google Scholar
  33. Kumar, N., and Benbasat, I., 2004. The effect of relationship encoding, task type, and complexity on information representation: an empirical evaluation of 2D and 3D line graphs. MIS Quarterly, 28(2), 255–281.Google Scholar
  34. Llobera, M., 2011. Archaeological visualization: towards an archaeological information science (AISc). Journal of Archaeological Method and Theory, 18(3), 193–223.CrossRefGoogle Scholar
  35. Lock, G. R., 2003. Using Computers in Archaeology: Towards Virtual Pasts. London/New York: Routledge.Google Scholar
  36. Lynch, M., and Woolgar, S., 1990. Representation in Scientific Practice. Cambridge: MIT Press.Google Scholar
  37. MacEachren, A. M., 1994. Some Truth with Maps: A Primer on Symbolization and Design. Washington, DC: Association of American Geographers.Google Scholar
  38. MacEachren, A. M., 1995. How Maps Work: Representation, Visualization, and Design. New York: Guilford Press.Google Scholar
  39. MacEachren, A. M., and Ganter, J. H., 1990. A pattern identification approach to cartographic visualization. Cartographica: The International Journal for Geographic Information and Geovisualization, 27(2), 64–81.CrossRefGoogle Scholar
  40. Marean, C. W., 2010. Pinnacle Point Cave 13B (Western Cape Province, South Africa) in context: the Cape Floral kingdom, shellfish, and modern human origins. Journal of Human Evolution, 59(3–4), 425–443.CrossRefGoogle Scholar
  41. Marean, C. W., Bar-Matthews, M., Bernatchez, J., Fisher, E., Goldberg, P., Herries, A. I. R., Jacobs, Z., Jerardino, A., Karkanas, P., Minichillo, T., Nilssen, P. J., Thompson, E., Watts, I., and Williams, H. M., 2007. Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature, 449(7164), 905–908.CrossRefGoogle Scholar
  42. Marean, C. W., Bar-Mathews, M., Fisher, E. C., Goldberg, P., Herries, A., Karkanas, P., Nilssen, P. J., and Thompson, E., 2010. The stratigraphy of the Middle Stone Age sediments at Pinnacle Point Cave 13B (Mossel Bay, Western Cape Province, South Africa). Journal of Human Evolution, 59(3–4), 234–255.CrossRefGoogle Scholar
  43. Mayer, R. E., 2001. Multimedia Learning. Cambridge/New York: Cambridge University Press.CrossRefGoogle Scholar
  44. McCoy, M. D., and Ladefoged, T. N., 2009. New developments in the use of spatial technology in archaeology. Journal of Archaeological Research, 17(3), 263–295.CrossRefGoogle Scholar
  45. Moore, G. E., 1975. Progress in digital integrated electronics. Electron Devices Meeting, 1975 International, 21, 11–13.Google Scholar
  46. Smallman, H. S., and Cook, M. B., 2011. Naïve realism: folk fallacies in the design and use of visual displays. Topics in Cognitive Science, 3(3), 579–608.CrossRefGoogle Scholar
  47. Suárez, M., 2010. Scientific representation. Philosophy Compass, 5(1), 91–101.CrossRefGoogle Scholar
  48. Trumpower, D. L., and Fellus, O., 2008. Naïve statistics: intuitive analysis of variance. In: Love, B. C., McRae, K., and Sloutsky, V. M. (eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society, pp. 499–503.Google Scholar
  49. Wang, C.-L., and Shen, H.-W., 2011. Information theory in scientific visualization. Entropy, 13(1), 254–273.CrossRefGoogle Scholar
  50. Ware, C., 1988. Color sequences for univariate maps: theory, experiments and principles. Computer Graphics and Applications IEEE, 8(5), 41–49.CrossRefGoogle Scholar
  51. Ware, C., 2013. Information Visualization: Perception for Design, 3rd edn. Waltham, MA/Amsterdam: Morgan Kaufman/Elsevier.Google Scholar
  52. Wickens, C. D., Merwin, D. H., and Lin, E. L., 1994. Implications of graphics enhancements for the visualization of scientific data: dimensional integrality, stereopsis, motion, and mesh. Human Factors, 36(1), 44–61.Google Scholar
  53. Wynn, J. C., 1986. A review of geophysical methods used in archaeology. Geoarchaeology, 1(3), 245–257.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.School of Human Evolution and Social ChangeArizona State UniversityTempeUSA
  2. 2.Institute of Human Origins, School of Human Evolution and Social Change, Arizona State UniversityTempeUSA
  3. 3.Centre for Coastal Palaeoscience, Nelson Mandela Metropolitan University, Port ElizabethEastern CapeSouth Africa