Encyclopedia of Geoarchaeology

2017 Edition
| Editors: Allan S. Gilbert

Electron Spin Resonance (ESR) in Archaeological Context

Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-4409-0_42


Electron paramagnetic resonance (EPR) dating


Electron spin resonance (ESR) dating is a chronometric dating method, but depending on the author, it may also be classified as a radiation exposure, a trapped charge, a paleodosimetric, or a radiometric method. Like other methods that use luminescence phenomena, ESR is based on an evaluation of the exposure of some materials to natural radioactivity. This expsoure is expressed as an absorbed radiation dose, which corresponds to the energy deposited in the matter by ionizing radiation. Such materials can acquire or develop a paramagnetic behavior under the effect of natural radioactivity, which can be later detected and quantified by means of ESR spectroscopy.

Use of this technique for dating purposes was first suggested by Ikeya (1975) based on the study of stalactites from caves in Japan. Since then, numerous applications to a wide range of materials have been to varying degrees successfully attempted (see the...

This is a preview of subscription content, log in to check access.


  1. Aitken, M. J., 1985. Thermoluminescence Dating. London: Academic.Google Scholar
  2. Ankjærgaard, C., and Murray, A. S., 2007. Total beta and gamma dose rates in trapped charge dating based on beta counting. Radiation Measurements, 42(3), 352–359.CrossRefGoogle Scholar
  3. Arnold, L. J., Duval, M., Falguères, C., Bahain, J.-J., and Demuro, M., 2012. Portable gamma spectrometry with cerium-doped lanthanum bromide scintillators: suitability assessments for luminescence and electron spin resonance dating applications. Radiation Measurements, 47(1), 6–18.CrossRefGoogle Scholar
  4. Bartoll, J., and Ikeya, M., 1997. ESR dating of pottery: a trial. Applied Radiation and Isotopes, 48(7), 981–984.CrossRefGoogle Scholar
  5. Bassiakos, Y., 2001. Assessment of the lower ESR dating range in Greek speleothems. Journal of Radioanalytical and Nuclear Chemistry, 247(3), 629–633.CrossRefGoogle Scholar
  6. Beerten, K., and Stesmans, A., 2005. Single quartz grain electron spin resonance (ESR) dating of a contemporary desert surface deposit, Eastern Desert, Egypt. Quaternary Science Reviews, 24(1–2): 223–231.Google Scholar
  7. Beerten, K., Pierreux, D., and Stesmans, A., 2003. Towards single grain ESR dating of sedimentary quartz: first results. Quaternary Science Reviews, 22(10–13), 1329–1334.CrossRefGoogle Scholar
  8. Blackwell, B. A. B., Skinner, A. R., Mashriqi, F., Deely, A. E., Long, R. A., Gong, J. J. J., Kleindienst, M. R., and Smith, J. R., 2012. Challenges in constraining pluvial events and hominin activity: examples of ESR dating molluscs from the Western Desert, Egypt. Quaternary Geochronology, 10, 430–435.CrossRefGoogle Scholar
  9. Brennan, B. J., Rink, W. J., Rule, E. M., Schwarcz, H. P., and Prestwich, W. V., 1999. The ROSY ESR dating program. Ancient TL, 17(2), 45–53.Google Scholar
  10. Duval, M., and Arnold, L. J., 2013. Field gamma dose-rate assessment in natural sedimentary contexts using LaBr3(Ce) and NaI(Tl) probes: a comparison between the “threshold” and “windows” techniques. Applied Radiation and Isotopes, 74, 36–45.CrossRefGoogle Scholar
  11. Duval, M., Grün, R., Falguères, C., Bahain, J.-J., and Dolo, J.-M., 2009. ESR dating of lower Pleistocene fossil teeth: limits of the single saturating exponential (SSE) function for the equivalent dose determination. Radiation Measurements, 44(5–6), 477–482.CrossRefGoogle Scholar
  12. Duval, M., Falguères, C., and Bahain, J.-J., 2012. Age of the oldest hominin settlements in Spain: contribution of the combined U-series/ESR dating method applied to fossil teeth. Quaternary Geochronology, 10, 412–417.CrossRefGoogle Scholar
  13. Duval, M., Bahain, J. -J., Falguères, C., Garcia, J., Guilarte, V., Grün, R., Martínez, K., Moreno, D., Shao, Q., and Voinchet, P., 2015. Revisiting the ESR chronology of the early pleistocene hominin occupation at Vallparadís (Barcelona, Spain). Quaternary International. doi:10.1016/j.quaint.2014.08.054Google Scholar
  14. Falguères, C., 2003. ESR dating and the human evolution: contribution to the chronology of the earliest humans in Europe. Quaternary Science Reviews, 22(10–13), 1345–1351.CrossRefGoogle Scholar
  15. Falguères, C., Bahain, J.-J., Duval, M., Shao, Q., Han, F., Lebon, M., Mercier, N., Perez-Gonzalez, A., Dolo, J.-M., and Garcia, T., 2010. A 300–600 ka ESR/U-series chronology of Acheulian sites in Western Europe. Quaternary International, 223–224, 293–298.CrossRefGoogle Scholar
  16. Fattibene, P., and Callens, F., 2010. EPR dosimetry with tooth enamel: a review. Applied Radiation and Isotopes, 68(11), 2033–2116.CrossRefGoogle Scholar
  17. Goldstein, S. J., and Stirling, C. H., 2003. Techniques for measuring Uranium-series nuclides: 1992–2002. In. Bourdon, B., Henderson, G. M., Lundstrom, C. C., and Turner, S. P. (eds.), Uranium-Series Geochemistry. Reviews in Mineralogy and Geochemistry.Washington:Mineralogical Society of America, 52(1): 23–58.Google Scholar
  18. Grün, R., 1989. Electron spin resonance (ESR) dating. Quaternary International, 1, 65–109.CrossRefGoogle Scholar
  19. Grün, R., 1992. Suggestions for minimum requirements for reporting ESR age estimates. Ancient TL, 10(3), 37–41.Google Scholar
  20. Grün, R., 2007. Electron spin resonance dating. In Elias, S. A. (ed.), Encyclopedia of Quaternary Science. Amsterdam: Elsevier, pp. 1505–1516.CrossRefGoogle Scholar
  21. Grün, R., 2009a. The relevance of parametric U-uptake models in ESR age calculations. Radiation Measurements, 44(5–6), 472–476.CrossRefGoogle Scholar
  22. Grün, R., 2009b. The DATA program for the calculation of ESR age estimates on tooth enamel. Quaternary Geochronology, 4(3), 231–232.CrossRefGoogle Scholar
  23. Grün, R., Maroto, J., Eggins, S., Stringer, C., Robertson, S., Taylor, L., Mortimer, G., and McCulloch, M., 2006. ESR and U-series analyses of enamel and dentine fragments of the Banyoles mandible. Journal of Human Evolution, 50(3), 347–358.CrossRefGoogle Scholar
  24. Grün, R., Aubert, M., Hellstrom, J., and Duval, M., 2010. The challenge of direct dating old human fossils. Quaternary International, 223–224, 87–93.CrossRefGoogle Scholar
  25. Guérin, G., Mercier, N., and Adamiec, G., 2011. Dose-rate conversion factors: update. Ancient TL, 29(1), 5–8.Google Scholar
  26. Ikeya, M., 1975. Dating a stalactite by electron paramagnetic resonance. Nature, 255(5503), 48–50.CrossRefGoogle Scholar
  27. Ikeya, M., 1993. New Applications of Electron Spin Resonance: Dating, Dosimetry and Microscopy. Singapore: World Scientific Publishing.CrossRefGoogle Scholar
  28. Laurent, M., Falguères, C., Bahain, J.-J., Rousseau, L., and Van Vliet Lanoé, B., 1998. ESR dating of quartz extracted from quaternary and neogene sediments: method, potential and actual limits. Quaternary Geochronology, 17(11), 1057–1062.Google Scholar
  29. Lin, M., Yin, G., Ding, Y., Cui, Y., Chen, K., Wu, C., and Xu, L., 2006. Reliability study on ESR dating of the aluminum center in quartz. Radiation Measurements, 41(7–8), 1045–1049.CrossRefGoogle Scholar
  30. Ludwig, K. R., and Renne, P. R., 2000. Geochronology on the paleoanthropological time scale. Evolutionary Anthropology: Issues, News, and Reviews, 9(2), 101–110.CrossRefGoogle Scholar
  31. Miallier, D., Guérin, G., Mercier, N., Pilleyre, T., and Sanzelle, S., 2009. The Clermont radiometric reference rocks: a convenient tool for dosimetric purposes. Ancient TL, 27(2), 37–43.Google Scholar
  32. Mishra, S., White, M. J., Beaumont, P., Antoine, P., Bridgland, D. R., Limondin-Lozouet, N., Santisteban, J. I., Schreve, D. C., Shaw, A. D., Wenban-Smith, F. F., Westaway, R. W. C., and White, T. S., 2007. Fluvial deposits as an archive of early human activity. Quaternary Science Reviews, 26(22–24), 2996–3016.CrossRefGoogle Scholar
  33. Molodkov, A., 2001. ESR dating evidence for early man at a Lower Palaeolithic cave-site in the Northern Caucasus as derived from terrestrial mollusc shells. Quaternary Science Reviews, 20(5–9), 1051–1055.CrossRefGoogle Scholar
  34. Monnier, J.-L., Hallégouët, B., Hinguant, S., Laurent, M., Auguste, P., Bahain, J.-J., Falguères, C., Gebhardt, A., Marguerie, D., Molines, N., Morzadec, H., and Yokoyama, Y., 1994. A new regional group of the Lower Palaeolithic in Brittany (France), recently dated by Electron Spin Resonance. Comptes Rendus de lAcadémie des sciences de Paris, 319, 155–160.Google Scholar
  35. Olley, J. M., Murray, A., and Roberts, R. G., 1996. The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments. Quaternary Science Reviews, 15(7), 751–760.CrossRefGoogle Scholar
  36. Porat, N., and Schwarcz, H. P., 1991. Use of signal subtraction methods in ESR dating of burned flint. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 18(1–2), 203–212.CrossRefGoogle Scholar
  37. Prescott, J. R., and Hutton, J. T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements, 23(2–3), 497–500.CrossRefGoogle Scholar
  38. Regulla, D. F., 2005. ESR spectrometry: a future-oriented tool for dosimetry and dating. Applied Radiation and Isotopes, 62(2), 117–127.CrossRefGoogle Scholar
  39. Rink, W. J., 1997. Electron spin resonance (ESR) dating and ESR applications in quaternary science and archaeometry. Radiation Measurements, 27(5–6), 975–1025.CrossRefGoogle Scholar
  40. Rink, W. J., Bartoll, J., Goldberg, P., and Ronen, A., 2003. ESR dating of archaeologically relevant authigenic terrestrial apatite veins from Tabun Cave, Israel. Journal of Archaeological Science, 30(9), 1127–1138.CrossRefGoogle Scholar
  41. Romanyukha, A. A., Schauer, D. A., Thomas, J. A., and Regulla, D. F., 2005. Parameters affecting EPR dose reconstruction in teeth. Applied Radiation and Isotopes, 62(2), 147–154.CrossRefGoogle Scholar
  42. Schwarcz, H. P., 1985. ESR studies of tooth enamel. Nuclear Tracks and Radiation Measurements (1982), 10(4–6), 865–867.CrossRefGoogle Scholar
  43. Shao, Q., Bahain, J.-J., Dolo, J.-M. and Falguères, C. (2014). Monte Carlo approach to calculate US-ESR age and age uncertainty for tooth enamel. Quaternary Geochronology, 22, 99–106.Google Scholar
  44. Torres, T. de, Ortiz, J. E., Grün, R., Eggins, S., Valladas, H., Mercier, N., Tisnérat-Laborde, N., Juliá, R., Soler, V., Martínez, E., Sánchez-Moral, S., Cañaveras, J. C., Lario, J., Badal, E., Lalueza-Fox, C., Rosas, A., Santamaría, D., de la Rasilla, M., and Fortea, J., 2010. Dating of the hominid (Homo neanderthalensis) remains accumulation from el Sidrón cave (Piloña, Asturias, North Spain): an example of a multi-methodological approach to the dating of upper Pleistocene sites. Archaeometry, 52(4), 680–705.Google Scholar
  45. Toyoda, S., and Ikeya, M., 1991. Thermal stabilities of paramagnetic defect and impurity centers in quartz: basis for ESR dating of thermal history. Geochemical Journal, 25(6), 437–445.CrossRefGoogle Scholar
  46. Valladas, H., Mercier, N., Ayliffe, L. K., Falguères, C., Bahain, J.-J., Dolo, J.-M., Froget, L., Joron, J.-L., Masaoudi, H., Reyss, J.-L., and Moncel, M.-H., 2008. Radiometric dates for the Middle Palaeolithic sequence of Payre (Ardèche, France). Quaternary Geochronology, 3(4), 377–389.CrossRefGoogle Scholar
  47. Voinchet, P., Falguères, C., Tissoux, H., Bahain, J.-J., Despriée, J., and Pirouelle, F., 2007. ESR dating of fluvial quartz: estimate of the minimal distance transport required for getting a maximum optical bleaching. Quaternary Geochronology, 2(1–4), 363–366.CrossRefGoogle Scholar
  48. Voinchet, P., Despriée, J., Tissoux, H., Falguères, C., Bahain, J.-J., Gageonnet, R., Dépont, J., and Dolo, J.-M., 2010. ESR chronology of alluvial deposits and first human settlements of the Middle Loire Basin (Region Centre, France). Quaternary Geochronology, 5(2–3), 381–384.CrossRefGoogle Scholar
  49. Yokoyama, Y., Bibron, R., and Falguères, C., 1988. Datation absolue des planchers stalagmitiques de la grotte du Vallonnet à Roquebrune-Cap-Martin (Alpes-Maritimes) France, par la Résonance de Spin Électronique (ESR). L’Anthropologie, 92(2), 429–436.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.ESR Dating Laboratory, GeochronologyCentro Nacional de Investigación sobre la Evolución Humana (CENIEH)BurgosSpain