Skip to main content

Lithics

  • Reference work entry
  • First Online:
  • 145 Accesses

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Archaeological stone in geoarchaeology; Archaeometry of stone; Lithic technology; Petrology of lithics

Definition

Lithics. Stone used and modified in prehistory. The analytical tools and methods used to understand lithics in the past.

Introduction

Lithics is the term used to describe stone implements of the past and their study. It includes analysis of archaeologically recovered tools as well as the processes used to manufacture them based on empirical examination of residual evidence, experimentation, and analogy to modern and historic toolmaking societies. Lithic technologists work directly with the stone artifacts themselves and are concerned with the above goals. In contrast, this entry deals with the geoarchaeological aspects of lithic analysis, i.e., the information obtained by earth science techniques such as petrology, that further help refine our understanding of tool-using behavior. The entry will also examine some of the history and advances made in...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliograpahy

  • Ambrose, W. R., 1998. Obsidian hydration dating in a recent age obsidian mining site in Papua, New Guinea. In Shackley, M. S. (ed.), Archaeological Obsidian Studies: Method and Theory. New York: Plenum. Advances in Archaeological and Museum Science, Vol. 3, pp. 205–222.

    Chapter  Google Scholar 

  • Anovitz, L. M., Elam, J. M., Riciputi, L. R., and Cole, D. R., 1999. The failure of obsidian hydration dating: sources, implications, and new directions. Journal of Archaeological Science, 26(7), 735–752.

    Article  Google Scholar 

  • Bamforth, D. B., Burns, G. R., and Woodman, C., 1990. Ambiguous use traces and blind test results: new data. Journal of Archaeological Science, 17(4), 413–430.

    Article  Google Scholar 

  • Baxter, M. J., 1992. Archaeological uses of the biplot – a neglected technique? In Lock, G., and Moffet, J. (eds.), Computer Applications and Quantitative Methods in Archaeology 1991. Oxford: Tempus Reparatum. BAR International Series S577, pp. 141–148.

    Google Scholar 

  • Baxter, M. J., 1994. Stepwise discriminant analysis in archaeometry: a critique. Journal of Archaeological Science, 21(5), 659–666.

    Article  Google Scholar 

  • Bernard, H. R., 2006. Research Methods in Anthropology: Qualitative and Quantitative Approaches, 4th edn. Lanham, MD: Altamira Press.

    Google Scholar 

  • Boyer, W. W., and Robinson, P., 1956. Obsidian artifacts of northwestern New Mexico and their correlation with source material. El Palacio, 63(11–12), 333–345.

    Google Scholar 

  • Burroni, D., Donahue, R. E., Pollard, A. M., and Mussi, M., 2002. The surface alteration features of flint artefacts as a record of environmental processes. Journal of Archaeological Science, 29(11), 1277–1287.

    Article  Google Scholar 

  • Cann, J. R., and Renfrew, C., 1964. The characterization of obsidian and its application to the Mediterranean region. Proceedings of the Prehistoric Society, 30, 111–133.

    Article  Google Scholar 

  • Carter, T., Poupeau, G., Bressy, C., and Pearce, N. J. G., 2006. A new programme of obsidian characterization at Çatalhöyük, Turkey. Journal of Archaeological Science, 33(7), 893–909.

    Article  Google Scholar 

  • Cauvin, M.-C., and Balkan-Atlı, N., 1996. Rapport sur les recherches sur l’obsidienne en Cappdoce, 1993–1995. Anatolica Antiqua, IV, 249–271.

    Article  Google Scholar 

  • Christensen, M., and Walter, P., 1992. Physico-chimie en traceologie: Le cas des couteaux égyptiens. In Menu, M., and Walter, P. (eds.), La pierre préhistorique: Actes du séminaire du laboratoire de recherche des musées de France, 13 et 14 décembre 1990. Paris: Laboratoire de Recherche des Musées de France, pp. 149–171.

    Google Scholar 

  • Christensen, M., Walter, P., and Menu, M., 1992. Usewear characterisation of prehistoric flints with IBA. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 64(1–4), 488–493.

    Article  Google Scholar 

  • Christensen, M., Calligaro, T., Consigny, S., Dran, J.-C., Salomon, J., and Walter, P., 1998. Insight into the usewear mechanism of archaeological flints by implantation of a marker ion and PIXE analysis of experimental tools. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 136–138, 869–874.

    Article  Google Scholar 

  • Church, T., 1995. Comment on “neutron activation analysis of stone from the Chadron formation and a Clovis site on the Great Plains” by Hoard et al. (1992). Journal of Archaeological Science, 22(1), 1–5.

    Article  Google Scholar 

  • Craig, N., Speakman, R. J., Popelka-Filcoff, R. S., Glascock, M. D., Robertson, J. D., Shackley, M. S., and Aldenderfer, M. S., 2007. Comparison of XRF and PXRF for analysis of archaeological obsidian from southern Perú. Journal of Archaeological Science, 34(12), 2012–2024.

    Article  Google Scholar 

  • Davis, M. K., Jackson, T. L., Shackley, M. S., Teague, T., and Hampel, J. H., 2011. Factors affecting the energy-dispersive x-ray fluorescence (EDXRF) analysis of archaeological obsidian. In Shackley, M. S. (ed.), X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology. New York: Springer, pp. 45–64.

    Chapter  Google Scholar 

  • Deal, K., 2002. Effects of prescribed fire on obsidian and implications for reconstructing past landscape conditions. In Loyd, J. M., Origer, T. M., and Fredrickson, D. A. (eds.), The Effects of Fire and Heat on Obsidian. California: U.S. Department of the Interior, Bureau of Land Management, pp. 15–43. Cultural Resources Publication.

    Google Scholar 

  • Delage, C., 2003. Siliceous Rocks and Prehistory: Bibliography on Geo-archaeological Approaches to Chert Sourcing and Prehistoric Exploitation. Oxford: Hadrian Books. BAR International Series, Vol. 1168.

    Google Scholar 

  • Ericson, J. E., and Kimberlin, J., 1977. Obsidian sources, chemical characterization and hydration rates in west Mexico. Archaeometry, 19(2), 157–166.

    Article  Google Scholar 

  • Evans, A. A., and Donahue, R. E., 2005. The elemental chemistry of lithic microwear: an experiment. Journal of Archaeological Science, 32(12), 1733–1740.

    Article  Google Scholar 

  • Friedman, I., and Smith, R. L., 1960. A new dating method using obsidian. Part I, the development of the method. American Antiquity, 25(4), 476–493.

    Article  Google Scholar 

  • Friedman, I., Trembour, F. W., and Hughes, R. E., 1997. Obsidian hydration dating. In Taylor, R. E., and Aitken, M. J. (eds.), Chronometric Dating in Archaeology. New York: Plenum Press. Advances in Archaeological and Museum Science, Vol. 2, pp. 297–321.

    Chapter  Google Scholar 

  • Gendel, P. A., and Pirnay, L., 1982. Microwear analysis of experimental flint tools: further experimental results. Studia Praehistorica Belgica, 2, 251–265.

    Google Scholar 

  • Glascock, M. D., 1991. Tables for Neutron Activation Analysis, 3rd edn. Columbia: Research Reactor Facility, University of Missouri.

    Google Scholar 

  • Glascock, M. D., 1994. New world obsidian: recent investigations. In Scott, D. A., and Meyers, P. (eds.), Archaeometry of Pre-Columbian Sites and Artifacts: Proceedings of a Symposium Organized by the UCLA Institute of Archaeology and the Getty Conservation Institute, Los Angeles, California, March 23–27, 1992. Los Angeles: Getty Conservation Institute, pp. 113–134.

    Google Scholar 

  • Glascock, M. S., 2011. Comparison and contrast between XRF and NAA: used for characterization of obsidian sources in central Mexico. In Shackley, M. S. (ed.), X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology. New York: Springer, pp. 161–192.

    Chapter  Google Scholar 

  • Glascock, M. D., Braswell, G. E., and Cobean, R. H., 1998. A systematic approach to obsidian source characterization. In Shackley, M. S. (ed.), Archaeological Obsidian Studies: Method and Theory. New York: Plenum. Advances in Archaeological and Museum Science, Vol. 3, pp. 15–65.

    Chapter  Google Scholar 

  • Glascock, M. D., Speakman, R. J., and Pollard, H. P., 2005. LA-ICP-MS as a supplement to abbreviated-INAA for obsidian artifacts from the Aztec-Tarascan frontier. In Speakman, R. J., and Neff, H. (eds.), Laser Ablation ICP-MS in Archaeological Research. Albuquerque: University of New Mexico Press, pp. 29–36.

    Google Scholar 

  • Glascock, M. D., Speakman, R. J., and Neff, H., 2007. Archaeometry at the University of Missouri Research Reactor and the provenance of obsidian artefacts of North America. Archaeometry, 49(2), 343–357.

    Article  Google Scholar 

  • Goffer, Z., 1980. Archaeological Chemistry: A Sourcebook on the Applications of Chemistry to Archaeology. New York: Wiley. Chemical Analysis, Vol. 55.

    Google Scholar 

  • Grace, R., 1996. Use-wear analysis: the state of the art. Archaeometry, 38(2), 209–229.

    Article  Google Scholar 

  • Gratuze, B., 1999. Obsidian characterization by laser ablation ICP-MS and its application to prehistoric trade in the Mediterranean and the Near East: sources and distribution of obsidian with the Aegean and Anatolia. Journal of Archaeological Science, 26(8), 869–881.

    Article  Google Scholar 

  • Green, R. C., 1962. Obsidian, its application to archaeology. New Zealand Archaeological Society Newsletter, 5, 8–16.

    Google Scholar 

  • Green, R. C., 1998. A 1990s perspective on method and theory in archaeological volcanic glass studies. In Shackley, M. S. (ed.), Archaeological Obsidian Studies: Method and Theory. New York: Plenum. Advances in Archaeological and Museum Science, Vol. 3, pp. 223–235.

    Chapter  Google Scholar 

  • Hall, M. C., and Jackson, R. J., 1989. Obsidian hydrations rates in California. In Hughes, R. E. (ed.), Current Directions in California Obsidian Studies. Berkeley: University of California. University of California Archaeological Research Facility Contributions, Vol. 48, pp. 31–59.

    Google Scholar 

  • Harbottle, G., 1982. Chemical characterization in archaeology. In Ericson, J. E., and Earle, T. K. (eds.), Contexts for Prehistoric Exchange. New York: Academic, pp. 13–51.

    Chapter  Google Scholar 

  • Hildreth, W., 1981. Gradients in silicic magma chambers: implications for lithospheric magmatism. Journal of Geophysical Research – Solid Earth, 86(B11), 10153–10192.

    Article  Google Scholar 

  • Hoard, R. J., Holen, S. R., Glascock, M. D., and Neff, H., 1995. Additional comments on neutron activation analysis of stone from the Great Plains: reply to Church. Journal of Archaeological Science, 22(1), 7–10.

    Article  Google Scholar 

  • Högberg, A., and Olausson, D. S., 2007. Scandinavian Flint: An Archaeological Perspective. Aarhus, Denmark: Aarhus University Press.

    Google Scholar 

  • Hughes, R. E., 1984a. Obsidian studies in the Great Basin: problems and prospects. In Hughes, R. E. (ed.), Obsidian Studies in the Great Basin. Berkeley: University of California. Contributions of the University of California Archaeological Research Facility, Vol. 45, pp. 1–19.

    Google Scholar 

  • Hughes, R. E., 1984b. Obsidian Studies in the Great Basin. Berkeley: Archaeological Research Facility, Department of Anthropology, University of California. Contributions of the University of California Archaeological Research Facility, Vol. 45.

    Google Scholar 

  • Hughes, R. E., 1988. The Coso volcanic field reexamined: implications for obsidian sourcing and hydration dating research. Geoarchaeology, 3(4), 253–265.

    Article  Google Scholar 

  • Hughes, R. E., 1994. Intrasource separation of artefact-quality obsidians from the Casa Diablo area, California. Journal of Archaeological Science, 21(2), 263–271.

    Article  Google Scholar 

  • Hughes, R. E., and Smith, R. L., 1993. Archaeology, geology, and geochemistry in obsidian provenance studies. In Stein, J. K., and Linse, A. R. (eds.), Effects of Scale on Archaeological and Geoscientific Perspectives. Boulder: Geological Society of America. Geological Society of America Special Paper, Vol. 283, pp. 79–91.

    Chapter  Google Scholar 

  • Hughes, R. E., Högberg, A., and Olausson, D., 2012. The chemical composition of some archaeologically significant flint from Denmark and Sweden. Archaeometry, 54(5), 779–795.

    Article  Google Scholar 

  • Hull, K. L., 2001. Reasserting the utility of obsidian hydration dating: a temperature-dependent empirical approach to practical temporal resolution with archaeological obsidians. Journal of Archaeological Science, 28(10), 1025–1240.

    Article  Google Scholar 

  • Hull, K. L., 2002. Culture Contact in Context: A Multiscalar View of Catastrophic Depopulation and Culture Change in Yosemite Valley, California. PhD dissertation, University of California, Berkeley.

    Google Scholar 

  • Jack, R. N., and Carmichael, I. S. E., 1969. The chemical “fingerprinting” of acid volcanic rocks. California Division of Mines and Geology, Special Report, 100, 17–32.

    Google Scholar 

  • Jack, R. N., and Heizer, R. F., 1968. “Finger-printing” of some Mesoamerican obsidian artifacts. Contributions of the University of California Archaeological Research Facility, 5, 81–100.

    Google Scholar 

  • Jackson, R. J., 1984. Current problems in obsidian hydration analysis. In Hughes, R. E. (ed.), Obsidian Studies in the Great Basin. Berkeley: Archaeological Research Facility, Department of Anthropology, University of California. Contributions of the University of California Archaeological Research Facility, Vol. 45, pp. 103–116.

    Google Scholar 

  • Jackson, T. L., 1986. Late Prehistoric Obsidian Exchange in Central California. Unpublished PhD dissertation, Department of Anthropology, Stanford University.

    Google Scholar 

  • Jackson, T. L., 1989. Late prehistoric obsidian production and exchange in the North Coast Ranges, California. In Hughes, R. E. (ed.), Current Directions in California Obsidian Studies. Berkeley: Archaeological Research Facility, Department of Anthropology, University of California. Contributions of the University of California Archaeological Research Facility, Vol. 48, pp. 79–94.

    Google Scholar 

  • Judge, W. J., and Sebastian, L., 1988. Quantifying the Present and Predicting the Past: Theory, Method, and Application of Archaeological Predictive Modeling. Denver: U.S. Department of the Interior, Bureau of Land Management.

    Google Scholar 

  • Keeley, L. H., 1980. Experimental Determinations of Stone Tool Uses: A Microwear Analysis. Chicago: University of Chicago Press.

    Google Scholar 

  • Kempe, D. R. C., and Harvey, A. P. (eds.), 1983. The Petrology of Archaeological Artefacts. Oxford: Clarendon Press.

    Google Scholar 

  • Kuzmin, Y. V., Popov, V. K., Glascock, M. D., and Shackley, M. S., 2002. Sources of archaeological volcanic glass in the Primorye (Maritime) Province, Russian Far East. Archaeometry, 44(4), 505–515.

    Article  Google Scholar 

  • Layton, T. N., 1973. Temporal ordering of surface-collected artifacts by hydration measurement. Archaeometry, 15(1), 129–132.

    Article  Google Scholar 

  • Lewenstein, S. M., 1987. Stone Tool Use at Cerros: The Ethnoarchaeological and Use-Wear Evidence. Austin: University of Texas Press.

    Google Scholar 

  • Liritzis, I., 2006. SIMS-SS, a new obsidian hydration dating method: analysis and theoretical principles. Archaeometry, 48(3), 533–547.

    Article  Google Scholar 

  • Loyd, J. M., 2002. Rehydration of burned obsidian. In Loyd, J. M., Origer, T. M., and Fredrickson, D. A. (eds.), The Effects of Fire and Heat on Obsidian. Denver: U.S. Department of the Interior, Bureau of Land Management. Cultural Resources Publication, pp. 135–140.

    Google Scholar 

  • Loyd, J. M., Origer, T. M., and Fredrickson, D. A., 2002. The Effects of Fire and Heat on Obsidian. Denver: U.S. Department of the Interior, Bureau of Land Management. Cultural Resources Publication.

    Google Scholar 

  • Luedtke, B. E., 1992. An Archaeologist’s Guide to Chert and Flint. Los Angeles: University of California. Archaeological Research Tools, Vol. 7.

    Google Scholar 

  • Luedtke, B. E., and Meyers, J. T., 1984. Trace element variation in Burlington chert: a case study. In Butler, B. M., and May, E. E. (eds.), Prehistoric Chert Exploitation: Studies from the Midcontinent. Carbondale: Southern Illinois University. Center for Archaeological Investigations Occasional Paper, Vol. 2, pp. 287–298.

    Google Scholar 

  • MacDonald, R., Davies, G. R., Bliss, C. M., Leat, P. T., Bailey, D. K., and Smith, R. L., 1987. Geochemistry of high-silica peralkaline rhyolites, Naivasha, Kenya Rift Valley. Journal of Petrology, 28(6), 979–1008.

    Article  Google Scholar 

  • Mahood, G. A., and Hildreth, W., 1983. Large partition coefficients for trace elements in high-silica rhyolites. Geochimica et Cosmochimica Acta, 47(1), 11–30.

    Article  Google Scholar 

  • Matiskainen, H., Vuorinen, A., and Burman, O., 1989. The provenance of prehistoric flint in Finland. In Maniatis, Y. (ed.), Archaeometry, Proceedings of the 25th International Symposium. Amsterdam: Elsevier, pp. 625–643.

    Google Scholar 

  • Menu, M., and Walter, P., 1992. Alliage de disciplines: matières et techniques lithiques en préhistoire. In Menu, M., and Walter, P. (eds.), La pierre préhistorique: Actes du séminaire du laboratoire de recherche des musées de France, 13 et 14 décembre 1990. Paris: Laboratoire de Recherche des Musées de France, pp. 195–200.

    Google Scholar 

  • Michels, J. W., Tsong, I. S. T., and Smith, G. A., 1983. Experimentally derived hydration rates in obsidian dating. Archaeometry, 25(2), 107–117.

    Article  Google Scholar 

  • Neff, H., and Glascock, M. D., 1995. The state of nuclear archaeology in North America. Journal of Radioanalytical and Nuclear Chemistry, 196(2), 275–286.

    Article  Google Scholar 

  • Nelson, F. W., Jr., 1984. X-ray fluorescence analysis of some western North American obsidians. In Hughes, R. E. (ed.), Obsidian Studies in the Great Basin. Berkeley: Archaeological Research Facility, Department of Anthropology, University of California. Contributions of the University of California Archaeological Research Facility, Vol. 45, pp. 27–62.

    Google Scholar 

  • Odell, G. H., 2003. Lithic Analysis. New York: Springer Science.

    Google Scholar 

  • Odell, G. H., and Odell-Vereecken, F., 1980. Verifying the reliability of lithic use-wear assessments by ‘blind tests’: the low power approach. Journal of Field Archaeology, 7(1), 87–120.

    Google Scholar 

  • Ratté, J. C., 2004. A guide to the Mule Creek volcanic vent, the rhyolite of Potholes Country, and obsidian ledges, Gila National Forest, southwestern New Mexico. New Mexico Geology, 26(4), 111–122.

    Google Scholar 

  • Ridings, R., 1996. Where in the world does obsidian hydration dating work? American Antiquity, 61(1), 136–148.

    Article  Google Scholar 

  • Roll, T. E., Neeley, M. P., Speakman, R. J., and Glascock, M. D., 2005. Characterization of Montana cherts by LA-ICP-MS. In Speakman, R. J., and Neff, H. (eds.), Laser Ablation ICP-MS in Archaeological Research. Albuquerque: University of New Mexico Press, pp. 58–74.

    Google Scholar 

  • Shackley, M. S., 1988. Sources of archaeological obsidian in the southwest: an archaeological, petrological, and geochemical study. American Antiquity, 53(4), 752–772.

    Article  Google Scholar 

  • Shackley, M. S., 1995. Sources of archaeological obsidian in the greater American Southwest: an update and quantitative analysis. American Antiquity, 60(3), 531–551.

    Article  Google Scholar 

  • Shackley, M. S., 1998a. Gamma rays, x-rays and stone tools: some current advances in archaeological geochemistry. Journal of Archaeological Science, 25(3), 259–270.

    Article  Google Scholar 

  • Shackley, M. S. (ed.), 1998b. Archaeological Obsidian Studies: Method and Theory. New York: Plenum Press. Advances in Archaeological and Museum Science, Vol. 3.

    Google Scholar 

  • Shackley, M. S., 1998c. Intrasource chemical variability and secondary depositional processes: lessons from the American Southwest. In Shackley, M. S. (ed.), Archaeological Obsidian Studies: Method and Theory. New York: Plenum. Advances in Archaeological and Museum Science, Vol. 3, pp. 83–102.

    Chapter  Google Scholar 

  • Shackley, M. S., 2002. Precision versus accuracy in the XRF analysis of archaeological obsidian: some lessons for archaeometry and archaeology. In Jerem, E., and Biró, K. T. (eds.), Archaeometry 98: Proceedings of the 31st International Symposium on Archaeometry, Budapest, Hungary, April 26–May 3, 1998. Oxford: Archaeopress. Archaeolingua, Central European Series 1. British Archaeological Reports, International Series 1043., Vol. 2, pp. 805–810.

    Google Scholar 

  • Shackley, M. S., 2005. Obsidian: Geology and Archaeology in the North American Southwest. Tucson: University of Arizona Press.

    Google Scholar 

  • Shackley, M. S., 2008. Archaeological petrology and the archaeometry of lithic materials. Archaeometry, 50(2), 194–215.

    Article  Google Scholar 

  • Shackley, M. S., 2011. An introduction to X-Ray fluorescence (XRF) analysis in archaeology. In Shackley, M. S. (ed.), X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology. New York: Springer, pp. 7–44.

    Chapter  Google Scholar 

  • Shackley, M. S., 2013. The Secondary distribution of archaeological obsidian in Rio Grande quaternary Sediments, Jemez Mountains to San Antonito, New Mexico: inferences for Paleoamerican procurement and the Age of Sediments. Poster presented at the Paleoamerican Odyssey Conference, Santa Fe, October, 2013.

    Google Scholar 

  • Shackley, M. S., and Dillian, C., 2002. Thermal and environmental effects on obsidian geochemistry: experimental and archaeological evidence. In Loyd, J. M., Origer, T. M., and Fredrickson, D. A. (eds.), The Effects of Fire and Heat on Obsidian. Denver: U.S. Department of the Interior, Bureau of Land Management. Cultural Resources Publication, pp. 117–134.

    Google Scholar 

  • Skinner, C. E., 1983. Obsidian Studies in Oregon: An Introduction to Obsidian and Investigations of Selected Methods of Obsidian Characterization Utilizing Obsidian Collected at Prehistoric Quarry Sites in Oregon. Master’s project, Interdisciplinary Studies, University of Oregon.

    Google Scholar 

  • Skinner, C. N., 2002. Fire regimes and fire history: implications for obsidian hydration dating. In Loyd, J. M., Origer, T. M., and Fredrickson, D. A. (eds.), The Effects of Fire and Heat on Obsidian. Denver: U.S. Department of the Interior, Bureau of Land Management. Cultural Resources Publication, pp. 147–152.

    Google Scholar 

  • Skinner, C. E., Thatcher, J. J., and Davis, M. K., 1997. X-ray Fluorescence and Obsidian Hydration Rim Measurement of Artifact Obsidian from 35-DS-193 and 35-DS-201, Surveyor Fire Rehabilitation Project, Deschutes National Forest, Oregon. Corvallis, OR: Northwest Research Obsidian Studies Laboratory Report 98-96.

    Google Scholar 

  • Speakman, R. J., and Glascock, M. D. (eds.), 2007. Special issue: acknowledging fifty years of neutron activation analysis in archaeology. Archaeometry, 49(2), 179420.

    Google Scholar 

  • Speakman, R. J., and Neff, H. (eds.), 2005. Laser Ablation ICP-MS in Archaeological Research. Albuquerque: University of New Mexico Press.

    Google Scholar 

  • Speakman, R. J., and Shackley, M. S., 2012. Silo science and portable XRF in archaeology: a response to Frahm. Journal of Archaeological Science, 40(2), 1435–1443.

    Article  Google Scholar 

  • Steffen, A., 2002. The Dome Fire pilot project: extreme obsidian fire effects in the Jemez Mountains. In Loyd, J. M., Origer, T. M., and Fredrickson, D. A. (eds.), The Effects of Fire and Heat on Obsidian. Denver: U.S. Department of the Interior, Bureau of Land. Cultural Resources Publication, pp. 159–202.

    Google Scholar 

  • Stevenson, C. M., Freeborn, W. P., and Scheetz, B. E., 1987. Obsidian hydration dating: an improved optical technique for measuring the width of the hydration rim. Archaeometry, 29(1), 120–123.

    Article  Google Scholar 

  • Stevenson, C. M., Carpenter, J., and Scheetz, B. E., 1989. Obsidian dating: recent advances in the experimental determination and application of hydration rates. Archaeometry, 31(2), 193–206.

    Article  Google Scholar 

  • Stevenson, C. M., Mazer, J. J., and Sheetz, B. E., 1998. Laboratory obsidian hydration rates: theory, method, and application. In Shackley, M. S. (ed.), Archaeological Obsidian Studies: Method and Theory. New York: Plenum. Advances in Archaeological and Museum Science, Vol. 3, pp. 181–204.

    Chapter  Google Scholar 

  • Summerhayes, G. R., Bird, J. R., Fullagar, R., Gosden, C., Specht, J., and Torrence, R., 1998. Applications of PIXE-PIGME to archaeological analysis of changing patterns of obsidian use in West New Britain, Papua New Guinea. In Shackley, M. S. (ed.), Archaeological Obsidian Studies: Method and Theory. New York: Plenum. Advances in Archaeological and Museum Science, Vol. 3, pp. 129–158.

    Chapter  Google Scholar 

  • Thomas, D. H., 1986. Refiguring Anthropology. Prospect Heights, IL: Waveland Press.

    Google Scholar 

  • Torrence, R., 1992. What is Lapita about obsidian? A view from the Talasea sources. In Galipaud, J.-C. (ed.), Poterie Lapita et peuplement: actes du Colloque Lapita, Nouméa, Nouvelle Calédonie. Nouméa, NC: O.R.S.T.O.M., pp. 111–126.

    Google Scholar 

  • Tykot, R. H., 1992. The sources and distribution of Sardinian obsidian. In Tykot, R. H., and Andrews, T. K. (eds.), Sardinia in the Mediterranean: A Footprint in the Sea. Sheffield: Sheffield Academic Press, pp. 57–70.

    Google Scholar 

  • Tykot, R. H., 1998. Mediterranean islands and multiple flows: the sources and exploitation of Sardinian obsidian. In Shackley, M. S. (ed.), Archaeological Obsidian Studies: Method and Theory. New York: Plenum. Advances in Archaeological and Museum Science, Vol. 3, pp. 67–82.

    Chapter  Google Scholar 

  • Tykot, R. H., and Young, S. M. M., 1995. Archaeological applications of inductively coupled plasma-mass spectrometry. In Orna, M. V. (ed.), Archaeological Chemistry: Organic, Inorganic, and Biochemical Analysis. Washington, DC: American Chemical Society. ACS Symposium Series, Vol. 625, pp. 116–130.

    Chapter  Google Scholar 

  • Unrath, G., Owen, L. R., van Gijn, A. L., Moss, E. H., Plisson, H., and Vaughn, P., 1986. An evaluation of microwear studies: a multi-analyst approach. Early Man News, 9–11, 117–176.

    Google Scholar 

  • Warashina, T., 1992. Allocation of jasper archaeological implements by means of ESR and XRF. Journal of Archaeological Science, 19(4), 357–373.

    Article  Google Scholar 

  • Ward, G., 1977. On the ease of ‘sourcing’ artefacts and the difficulty of ‘knowing’ prehistory. New Zealand Archaeological Association Newsletter, 20(3), 188–194.

    Google Scholar 

  • What is XRF? n.d. http://www.swxrflab.net/xrfinstrument.htm.

  • Williams-Thorpe, O., 1995. Obsidian in the Mediterranean and the Near East: a provenancing success story. Archaeometry, 37(2), 217–248.

    Article  Google Scholar 

  • Witthoft, J., 1967. Glazed polish on flint tools. American Antiquity, 32(3), 383–388.

    Article  Google Scholar 

  • Young, D., and Bamforth, D. B., 1990. On the macroscopic identification of used flakes. American Antiquity, 55(2), 403–409.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Steven Shackley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Shackley, M.S. (2017). Lithics. In: Gilbert, A.S. (eds) Encyclopedia of Geoarchaeology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4409-0_34

Download citation

Publish with us

Policies and ethics