Splines and Multiresolution Analysis

  • Brigitte Forster
Reference work entry


Splines and multiresolution are two independent concepts, which – consideredtogether – yield a vast variety of bases for image processing and image analysis.The idea of a multiresolution analysis is to construct a ladder of nested spacesthat operate as some sort of mathematical looking glass. It allows to separatecoarse parts in a signal or in an image from the details of various sizes.Spline functions are piecewise or domainwise polynomials in one dimension(1D) resp.nD.There is a variety of spline functions that generate multiresolution analyses.

The viewpoint in this chapter is the modeling of such spline functions in frequency domain via Fourier decay to generate functions with specified smoothness in time domain resp. space domain. The mathematical foundations are presented and illustrated at the example of cardinal B-splines as generators of multiresolution analyses. Other spline models such as complex B-splines, polyharmonic splines, hexagonal splines, and others are considered. For all these spline families exist fast and stable multiresolution algorithms which can be elegantly implemented in frequency domain. The chapter closes with a look on open problems in the field.


Scaling Function Trigonometric Polynomial Hexagonal Lattice Space Domain Multiresolution Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

  1. 1.
    Aldroubi A, Unser MA (eds) (1996) Wavelets in medicine and biology. CRC Press, Boca RatonzbMATHGoogle Scholar
  2. 2.
    Baraniuk R (2007) Compressive sensing. IEEE Signal Process Mag 4(4):118–120, 124CrossRefGoogle Scholar
  3. 3.
    Bartels RH, Bealty JC, Beatty JC (1995) An introduction to splines for use in computer graphics and geometric modeling. Morgan Kaufman, Los AltosGoogle Scholar
  4. 4.
    Battle G (1987) A block spin construction of ondelettes. Part 1: Lemarié functions. Commun Math Phys 110:601–615MathSciNetCrossRefGoogle Scholar
  5. 5.
    Blu T, Unser M (2000) The fractional spline wavelet transform: definition and implementation. In: proceedings of the 25th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’00), vol 1, Istanbul, Turkey, 5–9 June, 2000, pp 512–515Google Scholar
  6. 6.
    Blu T, Unser M (2003). A complete family of scaling functions: the (α, τ)-fractional splines. In: Proceedings of the 28th International Conference on Acoustics, Speech, and Signal Processing (ICASSP’03), vol 6, Hong Kong SAR, People’s Republic of China, April 6–10, 2003, pp 421–424Google Scholar
  7. 7.
    Buhmann MD (2003) Radial basis functions: theory and implementations. Cambridge monographs on applied and computational mathematics. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  8. 8.
    de Boor C, Höllig K, Riemenschneider S (1993) Box splines, vol 98 of Applied mathematical sciences. Springer, New YorkGoogle Scholar
  9. 9.
    de Boor C, Devore RA, Ron A (1994) Approximation from shiftinvariant subspaces of L2(Rd). Trans Am Math Soc 341(2):787–806zbMATHCrossRefGoogle Scholar
  10. 10.
    Burt PJ, Adelson EH (Apr 1983) The Laplacian pyramid as a compact image code. IEEE Trans Commun 31(4):532–540CrossRefGoogle Scholar
  11. 11.
    Candès EJ, Wakin MB (2008) An introduction to compressive sampling. IEEE Signal Process Mag 25(2):21–30CrossRefGoogle Scholar
  12. 12.
    Champeney DC (1987) A handbook of Fourier theorems. Cambridge University Press, CambridgezbMATHGoogle Scholar
  13. 13.
    Chen H-1 (2000) Complex harmonic splines, periodic quasi-wavelets, theory and applications. Kluwer Academic, DordrechtzbMATHCrossRefGoogle Scholar
  14. 14.
    Choi JY, Kim MW, Seong W, Ye JC (2009) Compressed sensing metal artifact removal in dental ct. In: Proceedings of IEEE International Symposium on Biomedical Imaging (ISBI), 28 June–1 July 2009, Boston, pp 334–337Google Scholar
  15. 15.
    Christensen O (2003) An introduction to frames and riesz bases. Birkhäuser, BostonzbMATHGoogle Scholar
  16. 16.
    Christensen O (2008) Frames and bases: an introductory course (applied and numerical harmonic analysis). Birkhäuser, BostonzbMATHGoogle Scholar
  17. 17.
    Chui CK (1988) Multivariate splines. SIAM, PhiladelphiaCrossRefGoogle Scholar
  18. 18.
    Chui C (1992) Wavelets—a tutorial in theory and practice. Academic, San DiegoGoogle Scholar
  19. 19.
    Chui CK (ed) (1992) Wavelets: a tutorial in theory and applications. Academic, BostonzbMATHGoogle Scholar
  20. 20.
    Condat L, Forster-Heinlein B, Van De Ville D (2007) A new family of rotation-covariant wavelets on the hexagonal lattice. In: SPIE Wavelets XII, Aug 2007, San DiegoGoogle Scholar
  21. 21.
    Condat L (2010) Image database. Online Ressource. lcondat/imagebase.html (Version of 22 Apr 2010)
  22. 22.
    Dahmen W, Kurdila A, Oswald P (eds) (1997) Multiscale wavelet methods for partial differential equations, vol 6 of Wavelet analysis and its applications. Academic, San DiegoGoogle Scholar
  23. 23.
    Daubechies I (1992) Ten lectures on wavelets. Society for Industrial and Applied Mathematics, PhiladelphiazbMATHCrossRefGoogle Scholar
  24. 24.
    Dierckx P (1993) Curve and surface fitting with splines. McGraw-Hill, New YorkzbMATHGoogle Scholar
  25. 25.
    Feilner M, Van De Ville D, Unser M (2005) An orthogonal family of quincunx wavelets with continuously adjustable order. IEEE Trans Image Process 4(4):499–510CrossRefGoogle Scholar
  26. 26.
    Forster B, Blu T, Unser M (2006) Complex B-splines. Appl Comput Harmon Anal 20(2): 261–282MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Forster B, Blu T, Van De Ville D, Unser M (2008) Shiftinvariant spaces from rotation-covariant functions. Appl Comput Harmon Anal 25(2): 240–265MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Forster B, Massopust P (2009) Statistical encounters with complex B-splines. Constr Approx 29(3):325–344MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Frikel J (2010) A new framework for sparse regularization in limited angle x-ray tomography. In IEEE international symposium on biomedical imaging, RotterdamGoogle Scholar
  30. 30.
    Giles RC, Kotiuga PR, Mansuripur M (1991) Parallel micromagnetic simulations using Fourier methods on a regular hexagonal lattice. IEEE Trans Magn 7(5):3815–3818CrossRefGoogle Scholar
  31. 31.
    Grigoryan AM (2002) Efficient algorithms for computing the 2-D hexagonal Fourier transforms. IEEE Trans Signal Process 50(6): 1438–1448MathSciNetCrossRefGoogle Scholar
  32. 32.
    Hales TC (2001) The honeycomb conjecture. Discr Comput Geom 25:1–22MathSciNetzbMATHGoogle Scholar
  33. 33.
    Heil C, Walnut DF (2006) Fundamental papers in wavelet theory. Princeton University Press, Princeton. New editionzbMATHGoogle Scholar
  34. 34.
    Jones DS (1966) Generalised functions. McGraw-Hill, LondonzbMATHGoogle Scholar
  35. 35.
    Lai M-J, Schumaker LL (2007) Spline functions on triangulations. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  36. 36.
    Laine AF, Schuler S, Fan J, Huda W (1994) Mammographic feature enhancement by multiscale analysis. IEEE Trans Med Imaging 13(4):725–740CrossRefGoogle Scholar
  37. 37.
    Legrand P (2009) Local regularity and multifractal methods for image and signal analysis. In: Abry P, Gonçalves P, Véhel L (eds) Scaling, fractals and wavelets, chap 11. Wiley-ISTE, LondonGoogle Scholar
  38. 38.
    Lemarié P-G (1988) Ondelettes a localisation exponentielle. J Math pures et Appl 67:227–236zbMATHGoogle Scholar
  39. 39.
    Lesage F, Provost J (2009) The application of compressed sensing for photo-acoustic tomography. IEEE Trans Med Imaging 28(4):585–594CrossRefGoogle Scholar
  40. 40.
    Lipow PR, Schoenberg IJ (1973) Cardinal interpolation and spline functions. III: Cardinal hermite interpolation. Linear Algebra Appl 6: 273–304MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Louis AK, Maaß P, Rieder A (1997) Wavelets: theory and applications. Wiley, New YorkzbMATHGoogle Scholar
  42. 42.
    Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58(6): 1182–1195CrossRefGoogle Scholar
  43. 43.
    Mallat S (1989) Multiresolution approximations and wavelet orthonormal bases of L2(R). Trans Am Math Soc 315:69–87MathSciNetzbMATHGoogle Scholar
  44. 44.
    Mallat SG (1998) A wavelet tour of signal processing. Academic, San DiegozbMATHGoogle Scholar
  45. 45.
    Mersereau RM (1979) The processing of hexagonally sampled two-dimensioanl signals. Proc IEEE 67(6):930–949CrossRefGoogle Scholar
  46. 46.
    Meyer Y (1992) Wavelets and operators. Cambridge University Press, CambridgezbMATHGoogle Scholar
  47. 47.
    Middleton L, Sivaswamy J (2005) Hexagonal image processing: a practical approach. Advances in pattern recognition. Springer, BerlinzbMATHGoogle Scholar
  48. 48.
    Nicolier F, Laligant O, Truchetet F (1998) B-spline quincunx wavelet transforms and implementation in Fourier domain. Proc SPIE 3522:223–234CrossRefGoogle Scholar
  49. 49.
    Nicolier F, Laligant O, Truchetet F (2002) Discrete wavelet transform implementation in Fourier domain for multidimensional signal. J Electron Imaging 11:338–346CrossRefGoogle Scholar
  50. 50.
    Nürnberger G (1989) Approximation by Spline functions. Springer, BerlinzbMATHCrossRefGoogle Scholar
  51. 51.
    Plonka G, Tasche M (1995) On the computation of periodic splione wavelets. Appl Comput Harmon Anal 2:1–14MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Püschel M, Rötteler M (2007) Algebraic signal processing theory: 2D spatail hexagonal lattice. IEEE Trans Image Proc 16(6):1506–1521CrossRefGoogle Scholar
  53. 53.
    Rabut C (1992a) Elementary m-harmonic cardinal B-splines. Numer Algorithms 2:39–62MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Rabut C (1992b) High level m-harmonic cardinal B-splines. Numer Algorithms 2:63–84MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Rice University (2010) Compressive sensing resources. Online Ressource. http://dsp. (Version of 30 Apr 2010)Google Scholar
  56. 56.
    Rudin W (1991) Functional analysis. International series in pure and applied mathematics. McGraw-Hill, New YorkGoogle Scholar
  57. 57.
    Sablonnière P, Sbibih D (1994) B-splines with hexagonal support on a uniform three-direction mesh of the plane. C R Acad Sci Paris Série I 319:227–282Google Scholar
  58. 58.
    Schempp W (1982) Complex contour integral representation of cardinal spline functions, vol 7 of Contemporary mathematics. American Mathematical Society, ProvidenceCrossRefGoogle Scholar
  59. 59.
    Schoenberg IJ (1946) Contributions to the problem of approximation of equidistant data by analytic functions. Part a.–on the problem of osculatory interpolation. A second class of analytic approximation formulae. Quart Appl Math 4:112–141MathSciNetGoogle Scholar
  60. 60.
    Schoenberg IJ (1946) Contributions to the problem of approximation of equidistant data by analytic functions. Part a.–on the problem of smoothing or graduation. A first class of analytic approximation formulae. Quart Appl Math 4:45–99MathSciNetGoogle Scholar
  61. 61.
    Schoenberg IJ (1969) Cardinal interpolation and spline functions. J Approx Theory 2:167–206MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Schoenberg IJ (1972) Cardinal interpolation and spline functions. II: Interpolation of data of power growth. J Approx Theory 6:404–420MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Schwartz L (1998) Théorie des distributions. Hermann, PariszbMATHGoogle Scholar
  64. 64.
    Unser M (2002) Splines: A perfect fit for medical imaging. In: Sonka M., Fitzpatrick JM (eds) Progress in biomedical optics and imaging, vol 3, no. 22, vol 4684, Part I of Proceedings of the SPIE international symposium on medical imaging: image processing (MI’02), San Diego, 24–28 Feb, pp 225–236Google Scholar
  65. 65.
    Unser M, Blu T (Mar 2000) Fractional splines and wavelets. SIAM Rev 42(1):43–67MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Unser M, Aldroubi A, Eden M (Mar 1991) Fast B-spline transforms for continuous image representation and interpolation. IEEE Trans Pattern Anal Mach Intell 13(3):277–285CrossRefGoogle Scholar
  67. 67.
    Unser M, Aldroubi A, Eden M (Mar 1992) On the asymptotic convergence of B-spline wavelets to gabor functions. IEEE Trans Info Theory 38: 864–872MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    Unser M, Aldroubi A, Eden M (Feb 1993a) B-spline signal processing: Part I—Theory. IEEE Trans Signal Process 41(2):821–833zbMATHCrossRefGoogle Scholar
  69. 69.
    Unser M, Aldroubi A, Eden M (Feb 1993b) B-spline signal processing: Part II—Efficient design and applications. IEEE Trans Signal Process 41(2):834–848zbMATHCrossRefGoogle Scholar
  70. 70.
    Van De Ville D, Blu T, Unser M, Philips W, Lemahieu I, Van de Walle R (2004) Hex-splines: a novel spline family for hexagonal lattices. IEEE Trans Image Process 13(6):758–772MathSciNetCrossRefGoogle Scholar
  71. 71.
    Van De Ville D, Blu T, Unser M (Nov 2005) Isotropic polyharmonic B-splines: scaling functions and wavelets. IEEE Trans Image Process 14(11):1798–1813MathSciNetCrossRefGoogle Scholar
  72. 72.
    Watson AB, Ahumuda AJ, Jr (1989) Hexagonal orthogonal-oriented pyramid as a model of image representation in visual cortex. IEEE Trans Biomed Eng 36(1):97–106CrossRefGoogle Scholar
  73. 73.
    Wendt H, Roux SG, Jaffard S, Abry P (2009) Wavelet leaders and bootstrap for multifractal analysis of images. Signal Process 89:1100–1114zbMATHCrossRefGoogle Scholar
  74. 74.
    Wojtaszczyk P (1997) A mathematical introduction to wavelets, vol 37 of London mathematical society student texts. Cambridge University Press, CambridgeGoogle Scholar
  75. 75.
    Young R (1980) An introduction to nonharmonic Fourier series. Academic, New York (revised first edition 2001)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Brigitte Forster
    • 1
  1. 1.Technische Universität MünchenGarchingGermany

Personalised recommendations