Encyclopedia of Optimization

2009 Edition
| Editors: Christodoulos A. Floudas, Panos M. Pardalos

Stable Set Problem: Branch & Cut Algorithms

Reference work entry
DOI: https://doi.org/10.1007/978-0-387-74759-0_634


Article Outline





  Stable Set Polytope



  Implementation Aspects


See also



In this article, we provide an overview on how the maximum weighted stable set problem can be solved exactly with Branch & Cut techniques. In addition, we provide selected references to other exact methods. We start with a brief introduction of the stable set problem and a few basic definitions but assuming that the reader is already familiar with the basic concepts. The main stress of this article lies in the review of polyhedral results for the stable set polytope in Sect. “Stable Set Polytope” and the discussion of separation procedures, Sect. “Separation”. An efficient Branch & Cut algorithm needs, in addition to strong separation routines, also a good branching strategy. This is discussed in Sect. “Branching”. At the end, some implementation aspects are considered.


Stable set Independent set Maximum clique Vertex packing Branch & Cut Separation Exact method 
This is a preview of subscription content, log in to check access.


  1. 1.
    Applegate D, Bixby R, Chvátal V, Cook W (2001) TSP Cuts Which Do Not Conform to the Template Paradigm. Comput Comb Optim LNCS, vol 2241:157–222Google Scholar
  2. 2.
    Alekseev VE (2003) On easy and hard hereditary classes of graphs with respect to the independent set problem. Discret Appl Math 132(1–3):17–26CrossRefzbMATHGoogle Scholar
  3. 3.
    Arora S, Safra S (1992) Probabilistic Checking of Proofs; a new Characterization of NP. In Proceedings 33rd IEEE Symposium on Foundations of Computer Science, pp 2–13. IEEE Computer Society, Los AngelesGoogle Scholar
  4. 4.
    Babel L, Tinhofer G (1990) A branch and bound algorithm for the maximum clique problem. ZOR-Methods Models Oper Res 34:207–217MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Balas E, Xue J (1996) Weighted and Unweighted Maximum Clique Algorithms with Upper Bounds from Fractional Coloring. Algorithmica 15(5):397–412MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Balas E, Yu CS (1989) On graphs with polynomially solvable maximum-weight clique problem. Networks 19(2):247–253MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Balas E, Yu CS (1986) Finding a Maximum Clique in an Arbitrary Graph. SIAM J 14(4):1054–1068MathSciNetCrossRefGoogle Scholar
  8. 8.
    Balas E, Chvátala V, Nešetřil J (1987) On the Maximum Weight Clique Problem. Math Oper Res 12(3):522–535MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Balas E, Padberg MW (1976) Set Partitioning: A Survey. SIAM Rev 18(4):710–761MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Balasa E, Ceria S, Cornuejols G, Pataki G (1996) Polyhedral methods for the maximum clique problem. In: Johnson DS, Trick MA (eds) American Mathematical Society. DIMACS vol 26, pp 11–28Google Scholar
  11. 11.
    Balinski ML (1970) On Maximum Matching, Minimum Covering and their Connections. In: Kuhn HW (ed) Proceedings of the Princeton symposium on mathematical programming. Princeton University Press, Princeton, pp 303–312Google Scholar
  12. 12.
    Barnes ER (2000) A Branch-and-Bound Procedure for the Largest Clique in a Graph. Approximation and Complexity in Numerical Optimization: Continuous and Discrete Problems. Kluwer, BostonGoogle Scholar
  13. 13.
    BHOSLIB (2000) Benchmarks with Hidden Optimum Solutions for Graph Problems (Maximum Clique, Maximum Independent Set, Minimum Vertex Cover and Vertex Coloring) – Hiding Exact Solutions in Random Graphs. http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm
  14. 14.
    Bhattacharya BK, Kaller D (1997) An O(m + n log n) Algorithm for the Maximum-Clique Problem in Circular-Arc Graphs. J Algorithms 25(3):336–358MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Bomze IM, Budinich M, Pardalos PM, Pelillo M (1999) The Maximum Clique Problem. Handbook of Combinatorial Optimization. Kluwer, BostonGoogle Scholar
  16. 16.
    Bomze IM, Stix V (1999) Genetic engineering via negative fitness: Evolutionary dynamics for global optimization. Annals Oper Res 89:297–318MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bonomo F, Durán G, Lin MC, Szwarcfiter JL (2005) On Balanced Graphs. Math Program 105(2–3):233–250Google Scholar
  18. 18.
    Bourjolly J-M, Laporte G, Mercure H (1997) A combinatorial column generation algorithm for the maximum stable set problem. Oper Res Lett 20(1):21–29MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Bron C, Kerbosch J (1973) Algorithm 457: Finding all cliques on an undirected graph. Commun ACM 16:575–57CrossRefzbMATHGoogle Scholar
  20. 20.
    Brønsted A (1983) An introduction to Convex Polytopes. Graduate Texts in Mathematics, vol 90. Springer, New YorkGoogle Scholar
  21. 21.
    Burer S, Monteiro RDC, Zhang Y (2002) Maximum stable set formulations and heuristics based on continuous optimization. Math Program 94(1):137–166MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Butenko S (2003) Maximum Independent Set and Related Problems, with Applications. PhD thesis, University of FloridaGoogle Scholar
  23. 23.
    Caprara A, Fiscetti M, Letchford AN (2000) On the Separation of Maximally Violated mod-k Cuts. Math Program 87(1):37–56MathSciNetzbMATHGoogle Scholar
  24. 24.
    Carr RD, Lancia G, Istrail S (2000) Branch-and-Cut Algorithms for Independent Set Problems: Integrality Gap and An Application to Protein Structure Alignment. Technical report, Sandia National Laboratories, Albuquerque, US; Sandia National Laboratories, LivermoreGoogle Scholar
  25. 25.
    Carraghan R, Pardalos PM (1990) An exact algorithm for the maximum clique problem. Oper Res Lett 9(6):375–382CrossRefzbMATHGoogle Scholar
  26. 26.
    Cheng E, Cunningham WH (1995) Separation problems for the stable set polytope. In: Balas E, Clausen J (eds) The 4th Integer Programming and Combinatorial Optimization Conference Proceedings. pp 65–79Google Scholar
  27. 27.
    Cheng E, Cunningham WH (1997) Wheel Inequalities for Stable Set Polytopes. Math Program 77:389–421MathSciNetGoogle Scholar
  28. 28.
    Cheng E, de Vries S (2002) Antiweb-wheel inequalities and their separation problems over the stable set polytopes. Math Program 92(1):153–175MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Chiba N, Nishizeki T (1985) Arboricity and subgraph listing algorithms. SIAM J 14:210–223MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Chudnovsky M, Cornuéjols G, Liu X, Seymour P, Vuškoviċ K (2005) Recognizing Berge Graphs. Comb 25(2):143–186Google Scholar
  31. 31.
    Chudnovsky M, Robertson N, Seymour P, Thomas R (2004) The strong perfect graph theorem. Ann Math 164:51229MathSciNetGoogle Scholar
  32. 32.
    Cogisa O, Thierry E (2005) Computing maximum stable sets for distance-hereditary graphs. Discret Optim 2(3):185–188CrossRefGoogle Scholar
  33. 33.
    Diestel R (2000) Graph Theory. Electronic Edition 2000. Springer, New YorkGoogle Scholar
  34. 34.
    Second DIMACS Challenge, 1992/1993. http://mat.gsia.cmu.edu/challenge.html
  35. 35.
    Fahle T (2002) Simple and Fast: Improving a Branch-And-Bound Algorithm for Maximum Clique, vol 2461/2002 Lecture Notes in Computer Science pp 485–498Google Scholar
  36. 36.
    Fujisawa K, Morito S, Kubo M (1995) Experimental Analyses of the Life Span Method for the Maximum Stable Set Problem. The Institute of Statistical Mathematics Cooperative Research Report 75:135–165Google Scholar
  37. 37.
    Garey MR, Johnson DS (1979) Computers and Intractability, A guide to the Theory of NP-Completeness. In: Klee V (ed) A series of books in the mathematical sciences. Freeman WH and Company, New YorkGoogle Scholar
  38. 38.
    Gerards AMH, Schrijver A (1986) Matrices with the Edmonds-Johnson property. Comb 6(4):365–379Google Scholar
  39. 39.
    Giandomenico M, Letchford AN (2006) Exploring the Relationship Between Max-Cut and Stable Set Relaxations. Math Program 106(1):159–175MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Grötschel M, Jünger M, Reinelt G (1984) A Cutting Plane Algorithm for the Linear Ordering Problem. Oper Res 32:1195–1220MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Grötschel M, Pulleyblank WR (1981) Weakly Bipartite Graphs and the Max-cut Problem. Oper Res Lett 1(1):23–27MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Grötschel M, Lovász L, Schrijver A (1988) Geometric Algorithms and Combinatorial Optimization. Algorithms and Combinatorics 2. Springer, BerlinzbMATHGoogle Scholar
  43. 43.
    Grötschel M, Lovász L, Schrijver A (1981) The Ellipsoid Method and Its Consequences in Combinatorial Optimization. Comb 1:169–197Google Scholar
  44. 44.
    Harary F, Ross IC (1957) A procedure for clique detection using the group matrix. Sociom 20:205–215Google Scholar
  45. 45.
    Hasselberg J, Pardalos PM, Vairaktarakis G (1993) Test case generators and computational results for the maximum clique problem. J Glob Optim 3(4):463–482MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Kallrath J, Wilson JM (1997) Business Optimization using Mathematical Programming. Macmillan, New YorkGoogle Scholar
  47. 47.
    Lawler E (2001) Combinatorial Optimization: Networks and Matroids. Reprint of the 1976 original. Dover Publications, Inc., MineolaGoogle Scholar
  48. 48.
    Lehmann KA, Kaufmann M, Steigele S, Nieselt K (2006) On the maximal cliques in c-max-tolerance graphs and their application in clustering molecular sequences. Algorithm Molecular Biol 1:9:1–17Google Scholar
  49. 49.
    Loukakis E, Tsouros C (1981) A depth first serach algorithm to generate the family of maximal independet sets of a graph lexicographically. Comput 27:249–266MathSciNetGoogle Scholar
  50. 50.
    Lovász L (1979) On the Shannon capacity of a graph. IEEE Trans Inform Theory 25(1):1–7MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Mannino C, Sassano A (2005) An exact algorithm for the maximum stable set problem. Comput Optim Appl 3(3):243–258MathSciNetCrossRefGoogle Scholar
  52. 52.
    Mannino C, Sassano A (1996) Edge Projection and the Maximum Cardinality Stable Set Problem. DIMACS Series Discret Math Theor Comput Sci 26:249–261MathSciNetGoogle Scholar
  53. 53.
    Mannino C, Stefanutti E (1999) An augmentation algorithm for the maximum weighted stable set problem. Comput Optim Appl 14(3):367–381MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Masuda S, Nakajima K, Kashiwabara T, Fujisawa T (1990) Efficient algorithms for finding maximum cliques of an overlap graph. Networks 20(2):157–171MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Mosca R (1997) Polynomial algorithms for the maximum stable set problem on particular classes of p5-free graphs. Inf Process Lett 61(3):137–143MathSciNetCrossRefGoogle Scholar
  56. 56.
    Nemhauser GL, Trotter LE Jr (1975) Vertex Packings: Structural Properties and Algorithms. Math Program 8:232–248MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Nemhauser GL, Trotter LE Jr (1974) Properties of Vertex Packing and Independence System Polyhedra. Math Program 6:48–61MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Nemhauser GL, Wolsey LA (1988) Integer and Combinatorial Optimization. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New YorkGoogle Scholar
  59. 59.
    Olariu S (1989) Weak bipolarizable graphs. Discret Math 74(1–2):159–171MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Östergård PRJ (2002) A fast algorithm for the maximum clique problem. Discret Appl Math 120(1–3):197–207CrossRefzbMATHGoogle Scholar
  61. 61.
    Padberg MW, Rinaldi G (1987) Optimization of a 532 City Symmetric Traveling Salesman Problem by Branch and Cut. Oper Res Lett 6:1–7MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Padberg MW (1973) On the Facial Structure of Set Packing Polyhedra. Math Prog 5:199–215MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Papadimitriou CH, Yannakakis M (1981) The clique problem for planar graphs. Inf Process Lett 13(4–5):131–133MathSciNetCrossRefGoogle Scholar
  64. 64.
    Pardalos PM, Phillips AT (1990) A global optimization approach for solving the maximum clique problem. Int J Comput Math 33(3–4):209–216CrossRefzbMATHGoogle Scholar
  65. 65.
    Pardalos PM, Rodgers GP (1992) A branch and bound algorithm for the maximum clique problem. Comput Oper Res 19(5):363–375CrossRefzbMATHGoogle Scholar
  66. 66.
    Ramírez-Alfonsín JL, Reed BA (eds) (2001) Perfect Graphs, Wiley‐Interscience Series in Discrete Mathematics and Optimization. Wiley, New YorkGoogle Scholar
  67. 67.
    Rebennack S (2006) Maximum Stable Set Problem: A Branch & Cut Solver. Diplomarbeit, Ruprecht–Karls Universität Heidelberg, Heidelberg, GermanyGoogle Scholar
  68. 68.
    Régin J-C (2003) Using constraint Programming to Solve the Maximum Clique Problem. Lecture Notes in Computer Science. Springer, Berlin, pp 634–648 Google Scholar
  69. 69.
    Rossi F, Smriglio S (2001) A Branch-and-Cut Algorithm for the Maximum Cardinality Stable Set Problem. Oper Res Lett 28:63–74MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Schrijver A (2003) Combinatorial Optimization: Polyhedra and Efficiency, vol 24 of Algorithms and Combinatorics. Springer, BerlinGoogle Scholar
  71. 71.
    Sewell EC (1998) A Branch and Bound Algorithm for the Stability Number of a Sparse Graph. INFORMS J Comput 10(4):438–447MathSciNetCrossRefGoogle Scholar
  72. 72.
    Strijk T, Verweij B, Aardal K (2000) Algorithms for maximum independent set applied to map labelling. Technical Report UU-CS-2000–22, http://citeseer.ist.psu.edu/article/strijk00algorithms.html
  73. 73.
    Tomita E, Tanaka A, Takahashi H (1988) The worst-time complexity for finding all the cliques. Technical report, University of Electro-Communications, Tokyo, JapanGoogle Scholar
  74. 74.
    Trotter LE (1975) A class of facet producing graphs for vertex packing polyhedra. Discret Math 12(4):373–388MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    Verweij B, Aardal K (1999) An Optimisation Algorithm for Maximum Independent Set with Applications in Map Labelling, vol 1643/1999 Lecture Notes in Computer Science, pp 426–437Google Scholar
  76. 76.
    Warren JS, Hicks IV (2006) Combinatorial Branch-and-Bound for the Maximum Weight Independent Set Problem. working paper, August 7 Google Scholar
  77. 77.
    Warrier D, Wilhelm WE, Warren JS, Hicks IV (2005) A branch-and-price approach for the maximum weight independent set problem. Network 46(4):198–209MathSciNetCrossRefzbMATHGoogle Scholar
  78. 78.
    West DB (2000) Introduction to Graph Theory, 2nd edn. Prentice HallGoogle Scholar
  79. 79.
    Wolsey LA (1998) Integer Programming. Wiley‐Interscience Series in Discrete Mathematics and Optimization. Wiley‐Interscience, New YorkGoogle Scholar
  80. 80.
    Wood DR (1997) An algorithm for finding a maximum clique in a graph. Oper Res Lett 21(5):211–217MathSciNetCrossRefzbMATHGoogle Scholar
  81. 81.
    Yildirim EA, Fan-Orzechowski X (2006) On Extracting Maximum Stable Sets in Perfect Graphs Using Lovász's Theta Function. Comput Optim Appl 33(2–3):229–247MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Ziegler GM (1995) Lecture on Polytopes. Graduate Texts in Mathematics. Springer, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Center of Applied OptimizationUniversity of FloridaGainesvilleUSA