Encyclopedia of Optimization

2009 Edition
| Editors: Christodoulos A. Floudas, Panos M. Pardalos

Shape Reconstruction Methods for Nonconvex Feasibility Analysis

  • Ipsita Banerjee
  • Marianthi Ierapetritou
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-74759-0_602
  • 94 Downloads

Article Outline

Introduction

Definition

  α-Shape Approach

  Selection of α

Formulation

  Feasibility Analysis Using α Shape

  Sampling Technique

Cases

  Process Operation Example

Conclusions

References

This is a preview of subscription content, log in to check access.

References

  1. 1.
    Biegler LT, Grossmann IE (2004) Retrospective on optimization. Comput Chem Eng 28:1169–1192Google Scholar
  2. 2.
    Edelsbrunner H (1992) Weighted alpha shapes Tech. Rep. UIUCDCS-R-92–1760, Dept Comp Sci, UIUC,ILGoogle Scholar
  3. 3.
    Edelsbrunner H, Kirkpatrick DG, Seidel R (1983) On the shape of a set of points in a plane. IEEE Trans Inform Theory IT-29:551–559MathSciNetCrossRefGoogle Scholar
  4. 4.
    Edwards K, Edgar TF, Manousiouthakis VI (1998) Kinetic model reduction using Genetic Algorithm. Comput Chem Eng 22:239–246CrossRefGoogle Scholar
  5. 5.
    Floudas CA, Gumus ZH, Ierapetritou MG (2001) Global optimization in design under uncertainty: feasibility test and flexibility index problems. Ind Eng Chem Res 40:4267–4282CrossRefGoogle Scholar
  6. 6.
    Goyal V, Ierapetritou MG (2002) Determination of operability limits using simplicial approximation. AIChE J 48:2902–2909CrossRefGoogle Scholar
  7. 7.
    Grossmann IE, Halemane KP (1982) A decomposition strategy for designing flexible chemical plants. AIChE J 28:686–694MathSciNetCrossRefGoogle Scholar
  8. 8.
    Grossmann IE, Sargent RWH (1978) Optimum design of chemical plants with uncertain parameters. AIChE J 24:1021–1028CrossRefGoogle Scholar
  9. 9.
    Haines E (1994) Point in polygon strategies. In: Heckbert P (ed) Graphic Gems IV. Academic Press, Boston, p 24Google Scholar
  10. 10.
    Halemane KP, Grossmann IE (1983) Optimal process design under uncertainty. AIChE J 29:425–433MathSciNetCrossRefGoogle Scholar
  11. 11.
    Jarvis RA (1977) Computing the shape hull of points in the plane. Proc IEEE Comp Soc Conf Pattern Recognition and Image Processes, 231–241Google Scholar
  12. 12.
    Kubic WL, Stein FP (1988) A theory of design reliability using probability and fuzzy sets. AIChE J 34:583–601MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mandal DB, Murthy CA (1997) Selection of alpha for alpha-hull in \( { \mathcal{R}^{2} } \). Pattern Recog 30:1759–1767Google Scholar
  14. 14.
    Pistikopoulos EN, Mazzuchi TA (1990) A novel flexibility analysis approach for processes with stochastic parameters. Comput Chem Eng 14:991–1000CrossRefGoogle Scholar
  15. 15.
    Rooney WR, Biegler LT (1999) Incorporating joint confidence regions into design under uncertainty. Comput Chem Eng 23:1563–1575CrossRefGoogle Scholar
  16. 16.
    Saboo AK, Morari M, Woodcock DC (1983) Design of resilient processing plants-VIII. A resilience index for heat exchanger networks. Chem Eng Sci 40:1553–1565CrossRefGoogle Scholar
  17. 17.
    Straub DA, Grossmann IE (1993) Design optimization of stochastic flexibility. Comput Chem Eng 17:339–354CrossRefGoogle Scholar
  18. 18.
    Swaney RE, Grossmann IE (1985) An index for operational flexibility in chemical process design I: Formulation and theory. AIChE J 31:621–630CrossRefGoogle Scholar
  19. 19.
    Vajda S, Valko P, Turanyi T (1985) Principal component analysis of kinetic models. Int J Chem Kinet 17:55–81CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Ipsita Banerjee
    • 1
  • Marianthi Ierapetritou
    • 1
  1. 1.Department of Chemical and Biochemical EngineeringRutgers UniversityPiscatawayUSA