Encyclopedia of Optimization

2009 Edition
| Editors: Christodoulos A. Floudas, Panos M. Pardalos

Gasoline Blending and Distribution Scheduling: An MILP Model

  • Zhenya Jia
  • Marianthi Ierapetritou
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-74759-0_195
  • 495 Downloads

Article Outline

Synonyms

  Indices

  Sets

  Parameters

  Variables

Introduction

Definition

Formulation

  Material Balance Constraints for Product-Stock Tank j

  Capacity Constraints

  Allocation Constraints

  Demand Constraints

  Sequence Constraints

  Duration Constraints

Blending Stage Consideration

  Material Balance Constraints for the Blender

  Material Balance Constraints for Component Tank l

  Allocation Constraints for Product-Stock Tank j

  Allocation Constraints for Blender

  Sequence Constraints

  Duration Constraints

  Objective Function

Case

Conclusions

References

This is a preview of subscription content, log in to check access.

References

  1. 1.
    DeWitt CW, Lasdon LS, Waren AD, Brenner DA, Melhem SA (1989) Omega: an improved gasoline blending system for Texaco. Interfaces 19:85CrossRefGoogle Scholar
  2. 2.
    Dujkanovic M, Babic B, Milosevic B, Sobajic DJ, Pao YH (1996) Fuzzy linear programming based optimal fuel scheduling incorporating blending/transloading facilities. IEEE Trans Power Syst 11:1017CrossRefGoogle Scholar
  3. 3.
    Floudas CA, Lin X (2004) Continuous-Time versus Discrete-Time Approaches for Scheduling of Chemical Processes: A Review. Comput Chem Eng 28:2109CrossRefGoogle Scholar
  4. 4.
    Floudas CA, Lin X (2005) Mixed Integer Linear Programming in Process Scheduling: Modeling, Algorithms, and Applications. Ann Oper Res 139:131MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Glismann K, Gruhn G (2001) Short-term planning of blending processes: scheduling and nonlinear optimization of recipes. Chem Eng Tech 24:246CrossRefGoogle Scholar
  6. 6.
    Glismann K, Gruhn G (2001) Short-term scheduling and recipe optimization of blending processes. Comput Chem Eng 25:627CrossRefGoogle Scholar
  7. 7.
    Ierapetritou MG, Floudas CA (1998) Effective Continuous-Time Formulation for Short-Term Scheduling. 1. Multipurpose Batch Processes. Ind Eng Chem Res 37:4341CrossRefGoogle Scholar
  8. 8.
    Ierapetritou MG, Floudas CA (1998) Effective Continuous-Time Formulation for Short-Term Scheduling. 2. Continuous and Semicontinuous Processes. Ind Eng Chem Res 37:4360CrossRefGoogle Scholar
  9. 9.
    Ierapetritou MG, Hene TS, Floudas CA (1999) Effective Continuous-Time Formulation for Short Term Scheduling. 3. Multiple Intermediate Due Dates. Ind Eng Chem Res 38:3446CrossRefGoogle Scholar
  10. 10.
    Jia Z, Ierapetritou MG, Kelly JD (2003) Refinery short-term scheduling using continuous time formulation – crude oil operations. Ind Eng Chem Res 42:3085CrossRefGoogle Scholar
  11. 11.
    Kelly JD. Honeywell Hi-Spec Solutions. Personal communicationGoogle Scholar
  12. 12.
    Quesada I, Grossmann IE (1995) Global optimization of bilinear process network with multicomponent flows. Comput Chem Eng 19:1219CrossRefGoogle Scholar
  13. 13.
    Rigby B, Lasdon LS, Waren AD (1995) The evolution of Texaco blending systems - from omega to starblend. Interfaces 25:64CrossRefGoogle Scholar
  14. 14.
    Singh A, Forbes JF, Vermeer PJ, Woo SS (2000) Model-based real-time optimization of automotive gasoline blending operations. J Process Control 10:43CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Zhenya Jia
    • 1
  • Marianthi Ierapetritou
    • 1
  1. 1.Department of Chemical and Biochemical EngineeringRutgers UniversityPiscatawayUSA