Encyclopedia of Optimization

2009 Edition
| Editors: Christodoulos A. Floudas, Panos M. Pardalos

Ellipsoid Method

  • Steffen Rebennack
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-74759-0_157

Article Outline

Keywords

Abstract

Introduction

Method

  The Basic Ellipsoid Algorithm

  Polynomially Running Time: Avoiding the Assumptions

  Modifications

Applications

  Linear Programming

  Separation and Optimization

Conclusion

See also

References

This is a preview of subscription content, log in to check access.

References

  1. 1.
    Padberg MW, Rao MR (1980) The Russian Method for Linear Inequalities. Graduate School of Business Administration, New York University, New York Google Scholar
  2. 2.
    Bland RG, Goldfarb D, Todd MJ (1981) The Ellipsoid Method: A Survey. Operat Res 29(6):1039–1091 MATHMathSciNetGoogle Scholar
  3. 3.
    Garey MR, Johnson DS (1979) Computers and Intractability, A guide to the Theory of NP-Completeness. In: Klee V (ed) A series of books in the mathematical sciences. WH Freeman and Company, New YorkGoogle Scholar
  4. 4.
    Gács P, Lovász L (1981) Khachiyan's Algorithm for Linear Programming. Math Program Stud 14:61–68MATHGoogle Scholar
  5. 5.
    Grötschel M, Lovász L, Schrijver A (1981) The Ellipsoid Method and Its Consequences in Combinatorial Optimization. Comb 1:169–197Google Scholar
  6. 6.
    Grötschel M, Lovász L, Schrijver A (1988) Geometric Algorithms and Combinatorial Optimization. In: Algorithms and Combinatorics 2. Springer, BerlinGoogle Scholar
  7. 7.
    Gill PE, Murray W, Saunders MA (1975) Methods for Computing and Modifying the LDV Factors of a Matrix. Math Comput 29(132):1051–1077MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Gerards AMH, Schrijver A (1986) Matrices with the Edmonds-Johnson property. Comb 6(4):365–379 MATHMathSciNetGoogle Scholar
  9. 9.
    Goldfarb D, Todd MJ (1982) Modifications and Implementation of The Ellipsoid Algorithm for Linear Programming. Math Program 23:1–19MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Karmarkar N (1984) A New Polynomial-Time Algorithm for Linear Programming. Comb 4(4):373–395MATHMathSciNetGoogle Scholar
  11. 11.
    Khachiyan LG (1979) A Polynomial Algorithm in Linear Programming. Dokl Akad Nauk SSSR 244:1093–1096 (English translation: Sov Math Dokl, 20(1):191–194, 1979)Google Scholar
  12. 12.
    Khachiyan LG (1980) Polynomial Algorithms in Linear Programming. Zhurnal Vychislit Math Math Fiz 20:51–68 (English translation: USSR Comput Math Math Phys, 20(1):53–72, 1980)Google Scholar
  13. 13.
    Klee V, Minty GL (1972) How good is the Simplex Algorithm? Inequalities III. In: Shisha O (ed). Academic Press, New York, pp 159–175Google Scholar
  14. 14.
    Krol J, Mirman B (1980) Some Practical Modifications of The Ellipsoid Method for LP Problems. Arcon Inc, BostonGoogle Scholar
  15. 15.
    Lawler EL (1980) The Great Mathematical Sputnik of 1979. Science 20(7):12–15, 34–35Google Scholar
  16. 16.
    Murray W, Todd M (2005) Tributes to George Dantzig and Leonid Khachiyan. SIAM Act Group Optim – Views News 16(1–2):1–6Google Scholar
  17. 17.
    Nemhauser GL, Wolsey LA (1999) Integer and Combinatorial Optimization. In: Wiley-Interscience Series in Discret Mathematics and Optimization. Wiley, New YorkGoogle Scholar
  18. 18.
    Rebennack S (2006) Maximum Stable Set Problem: A Branch & Cut Solver. Diplomarbeit, Ruprecht–Karls Universität Heidelberg Google Scholar
  19. 19.
    Schrader R (1983) The Ellipsoid Method and Its Implications. OR Spektrum 5(1):1–13MATHCrossRefGoogle Scholar
  20. 20.
    Shor NZ (1977) Cut-off Method with Space Extension in Convex Programming Problems. Kibern 13(1):94–95 (English translation: Cybern 13(1):94–96, 1977)Google Scholar
  21. 21.
    Khachiyan L (2005) 1952–2005: An Appreciation. SIAM News 38(10)Google Scholar
  22. 22.
    Tardos E (1986) A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs. Oper Res 34(2):250–256 MATHMathSciNetGoogle Scholar
  23. 23.
    Tee GJ (1980) Khachian's efficient algorithm for linear inequalities and linear programming. SIGNUM Newsl 15(1):13–15CrossRefGoogle Scholar
  24. 24.
    Yudin DB, Nemirovski AS (1976) Evaluation of the Informational Complexity of Mathematical Programming Problems. Èkon Math Metod 12:128–142 (English translation: Matekon, 13(2):3–25, 1976–7)Google Scholar
  25. 25.
    Yudin DB, Nemirovski AS (1976) Informational Complexity and Efficient Methods for the Solution of Convex Extremal Problems. Èkon Math Metod 12:357–369 (English translation: Matekon, 13(3):25–45, 1977)Google Scholar
  26. 26.
    Yudin DB, Nemirovski AS (1977) Optimization Methods Adapting to the “Significant” Dimension of the Problem. Autom Telemekhanika 38(4):75–87 (English translation: Autom Remote Control, 38(4):513–524, 1977)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Steffen Rebennack
    • 1
  1. 1.Center of Applied OptimizationUniversity of FloridaGainesvilleUSA