Encyclopedia of GIS

2008 Edition
| Editors: Shashi Shekhar, Hui Xiong

Modeling and Multiple Perceptions

  • Christine Parent
  • Stefano Spaccapietra
  • Esteban Zimányi
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-35973-1_805


Data modeling; Multiscale databases; Multirepresentation


Multirepresentation generalizes known concepts such as database views and geographic multiscale databases. This chapter describes the handling of multi‐representation in the MADS (Modeling Application Data with Spatio‐temporal features) data modeling approach. MADS builds on the concept of orthogonality to support multiple modeling dimensions. The structural basis of the MADS model is based on extended entity‐relationship (ER) constructs. This is complemented with three other modeling dimensions: space, time, and representation. The latter allows the specification of multiple perceptions of the real world and modeling of the multiple representations of real-world elements that are needed to materialize these perceptions.

Historical Background

Traditional database design organizes the data of interest into a database schema, which describes objects and their relationships, as well as their attributes. At the...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Chen, P.P.: The entity‐relationship model: towards a unified view of data. ACM Trans. Database Syst. 1, 9–36 (1976)CrossRefGoogle Scholar
  2. 2.
    Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language, Reference Manual, 2nd edn. Addison‐Wesley, Boston (2005)Google Scholar
  3. 3.
    Bédard, Y., Pageau, J., Caron, C.: Spatial data modeling: the Modul-R formalism and CASE technology. In: Proceedings of the ISPRS Symposium, Washington, 1–14 Aug 1992Google Scholar
  4. 4.
    Tryfona, N., Jensen, C.S.: Conceptual Data Modeling for Spatiotemporal Application. GeoInformatica 3(3), 245-268 (1999)CrossRefGoogle Scholar
  5. 5.
    Parent, C., Spaccapietra, S., Zimányi, E.: Conceptual Modeling for Traditional and Spatio‐temporal Applications: The MADS Approach. Springer, Berlin, Heidelberg (2006) Google Scholar
  6. 6.
    Price, R., Ramamohanarao, K., Srinivasan, B.: Spatio‐temporal Extensions to Unified Modeling Language. In: Proceedings of the Workshop on Spatio‐temporal Data Models and Languages, IEEE DEXA'99 Workshop, Florence, Italy, 1–3 Sept 1999Google Scholar
  7. 7.
    Bédard, Y., Larrivée, S., Proulx, M.J., Nadeau, M.: Modeling geospatial databases with plug-ins for visual languages: a pragmatic approach and the impacts of 16 years of research and experimentations on perceptory. In: Wang, S. et al. (eds.) ER Workshops, Shanghai, China. Lecture Notes in Computer Science, vol. 3289, pp. 17–30. Springer, Berlin, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    David, B., Raynal, L., Schorter, G.: GeO2: Why objects in a geographical DBMS? In: Abel, D.J., Ooi, B.C. (eds.) Proceedings of the 3rd International Symposium on Advances in Spatial Databases, SSD'93, Singaporer, 23–25 June 1993. Lecture Notes in Computer Science, vol. 692, pp. 264–276. Springer Berlin, Heidelberg (1993)Google Scholar
  9. 9.
    Bédard, Y., Bernier, É.: Supporting multiple representations with spatial databases view management and the concept of VUEL. In: The Joint Workshop on Multi-Scale Representation of Spatial Data, ISPRS WG IV/3, ICA Commission. On Map Generalization, Ottawa, Canada, 7–8 July 2002Google Scholar
  10. 10.
    Parent, C., Spaccapietra, S., Zimányi, E.: The MurMur Project: modeling and querying multi‐represented spatio‐temporal databases. Inf. Syst. 31, 733–769 (2006)CrossRefGoogle Scholar
  11. 11.
    Erwig, M., Schneider, M.: Spatio‐temporal predicates. IEEE Trans. Knowledge Data Eng. 14, 881–901 (2002)CrossRefGoogle Scholar
  12. 12.
    Weibel, R., Dutton, G.: Generalizing spatial data and dealing with multiple representations. In: Longley, P.A., Goodchild, M.F., Maguire, D.J., Rhind, D.W. (eds.) Geographical Information Systems: Principles, Techniques, Management and Applications, 2nd edn. vol. 1, pp. 125–155. Wiley, New York (1999)Google Scholar
  13. 14.
    Koubarakis, M. et al. (eds.): Spatio‐temporal Databases: The Chorochronos Approach. Lecture Notes in Computer Science, vol. 2520. Springer, Berlin, Heidelberg (2003)Google Scholar
  14. 15.
    Güting, R.H., Schneider, M.: Moving Objects Databases. Morgan Kaufmann, Amsterdam (2005)Google Scholar
  15. 16.
    Malinowski, E., Zimányi, E.: Advanced data warehouse design: From conventional to spatial and temporal applications. Springer, Berlin, Heidelberg (2007, in press)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Christine Parent
    • 1
  • Stefano Spaccapietra
    • 2
  • Esteban Zimányi
    • 3
  1. 1.University of LausanneLausanneSwitzerland
  2. 2.Swiss Federal Institute of TechnologyLausanneSwitzerland
  3. 3.Free University of BrusselsBrusselsBelgium