Encyclopedia of GIS

2008 Edition
| Editors: Shashi Shekhar, Hui Xiong

Mobile Object Indexing

  • George Kollios
  • Vassilis Tsotras
  • Dimitrios Gunopulos
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-35973-1_793


Spatio‐temporal index; Indexing moving objects


Consider a database that records the position of mobile objects in one and two dimensions, and following [8,13,16], assume that an object's movement can be represented (or approximated) with a linear function of time. For each object, the system stores an initial location, a starting time instant and a velocity vector (speed and direction). Therefore, the future positions of the object can be calculated, provided that the characteristics of its motion remain the same. Objects update their motion information when their speed or direction changes. It is assumed that the objects can move inside a finite domain (a line segment in one dimension or a rectangle in two). Furthermore, the system is dynamic, i. e., objects may be deleted or new objects may be inserted.

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Agarwal, P., Har-Peled, S.: Maintaining Approximate Exten Measures of Moving Points. In: Proceedings of the 12th ACM-SIAM Sympos. Discrete Algorithms, Washington, DC, USA, 7–9 Jan 2001, pp. 148–157Google Scholar
  2. 2.
    Agarwal, P.K., Arge, L., Erickson, J.: Indexing Moving Points. In: Proceedings of the 19th ACM Symp. on Principles of Database Systems, Dallas, Texas, USA, 15–17 May 2000, pp. 175–186Google Scholar
  3. 3.
    Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.: The R*-tree: An Efficient and Robust Access Method for Points and Rectangles. In: Proceedings of the 1990 ACM SIGMOD, Atlantic City, May 1998, pp. 322–331Google Scholar
  4. 4.
    Chon, H.D., Agrawal, D., Abbadi, A.E.: Query Processing for Moving Objects with Space-Time Grid Storage Model. In: Proceedings of the 3rd Int. Conf. on Mobile Data Management, Singapore, 8–11 Jan 2002, pp. 121–126Google Scholar
  5. 5.
    Elbassioni, K., Elmasry, A., Kamel, I.: An efficient indexing scheme for multi‐dimensional moving objects. In: Proceedings of the 9th Intern. Conf. ICDT, Siena, Italy, 8–10 2003, pp. 425–439Google Scholar
  6. 6.
    Goldstein, J., Ramakrishnan, R., Shaft, U., Yu, J.: Processing Queries By Linear Constraints. In: Proceedings of the 16th ACM PODS Symposium on Principles of Database Systems, Tucson, Arizona, USA, 13–15 May 1997, pp. 257–267Google Scholar
  7. 7.
    Jensen, C.S., Lin, D., Ooi, B.C.: Query and Update Efficient B+-Tree Based Indexing of Moving Objects. In: VLDB, Toronto, Canada, 29 Aug – 3 Sept 2004, pp. 768–779Google Scholar
  8. 8.
    Kollios, G., Gunopulos, D., Tsotras, V.: On Indexing Mobile Objects. In: Proceedings of the 18th ACM Symp. on Principles of Database Systems, Philadelphia, Pennsylvania, USA, 1–3 June 1999, pp. 261–272CrossRefGoogle Scholar
  9. 9.
    Matousek, J.: Efficient Partition Trees. Discret. Comput. Geom. 8, 432–448 (1992)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Overmars, M.H.: The Design of Dynamic Data Strucutures. vol. 156 of LNCS. Springer-Verlag, Heidelberg (1983)Google Scholar
  11. 11.
    Patel, J., Chen, Y., Chakka, V.: STRIPES: An Efficient Index for Predicted Trajectories. In: Proceedings of the 2004 ACM SIGMOD, Paris, France, 13–18 June 2004, pp. 637–646Google Scholar
  12. 12.
    Procopiuc, C.M., Agarwal, P.K., Har-Peled, S.: Star-tree: An efficient self‐adjusting index for moving objects. In: Proceedings of the 4th Workshop on Algorithm Engineering and Experiments, San Francisco, CA, USA, 4–5 Jan 2002, pp. 178–193CrossRefGoogle Scholar
  13. 13.
    Saltenis, S., Jensen, C., Leutenegger, S., Lopez, M.A.: Indexing the Positions of Continuously Moving Objects. In: Proceedings of the 2000 ACM SIGMOD, Dallas, Texas, USA, 16–18 May 2000, pp. 331–342Google Scholar
  14. 14.
    Tao, Y., Papadias, D., Sun, J.: The TPR*-Tree: An Optimized Spatio‐temporal Access Method for Predictive Queries. In: Proceedings of the 29th Intern. Coonf. on Very Large Data Bases, Berlin, Germany, 9–12 Sept 2003, pp. 790–801Google Scholar
  15. 15.
    Tayeb, J., Olusoy, O., Wolfson, O.: A Quadtree-Based Dynamic Attribute Indexing Method. Comp. J., 41(3), 185–200 (1998)Google Scholar
  16. 16.
    Wolfson, O., Xu, B., Chamberlain, S., Jiang, L.: Moving Objects Databases: Issues and Solutions. In: Proceedings of the 10th Int. Conf. on Scientfic and Statistical Database Management, Capri, Italy, 1–3 July 1998, pp. 111–122Google Scholar
  17. 17.
    Yiu, M.L., Tao, Y., Mamoulis, N.: The Bdual-Tree: Indexing Moving Objects by Space-Filling Curves in the Dual Space. VLDB J., To AppearGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • George Kollios
    • 1
  • Vassilis Tsotras
    • 2
  • Dimitrios Gunopulos
    • 2
  1. 1.Department of Computer ScienceBoston UniversityBostonUSA
  2. 2.Department of Computer Science and EngineeringUniversity of California-RiversideRiversideUSA