Encyclopedia of GIS

2008 Edition
| Editors: Shashi Shekhar, Hui Xiong

Indexing Spatio-temporal Archives

  • Marios Hadjieleftheriou
  • George Kollios
  • Vassilis J. Tsotras
  • Dimitrios Gunopulos
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-35973-1_617


Spatio-temporal index structures; Moving objects; Life-time; Evolution; Indexing, native-space; Indexing, parametric space; Index, R‑tree; Index, MVR‑tree


Consider a number of objects moving continuously on a 2‐dimensional universe over some time interval. Given the complete archive of the spatio‐temporal evolution of these objects, we would like to build appropriate index structures for answering range and nearest neighbor queries efficiently. For example: “Find all objects that appeared inside area S during time-interval \( [t_1, t_2) \)


Volume Reduction Index Structure Priority Queue Query Performance Time Granularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Aggarwal, C.C., Agrawal, D.: On nearest neighbor indexing of nonlinear trajectories. In: PODS, pp. 252–259 (2003)Google Scholar
  2. 2.
    Becker, B., Gschwind, S., Ohler, T., Seeger, B., Widmayer, P.: An asymptotically optimal multiversion B-Tree. VLDB J. 5(4), 264–275 (1996)CrossRefGoogle Scholar
  3. 3.
    Burton, F., Kollias, J., Kollias, V., Matsakis, D.: Implementation of overlapping B‑trees for time and space efficient representation of collection of similar files. Comput. J., 33(3), 279–280 (1990)CrossRefGoogle Scholar
  4. 4.
    Cai, M., Revesz, P.: Parametric R‑tree: An index structure for moving objects. In: COMAD, pp. 57–64 (2000)Google Scholar
  5. 5.
    Chakka, V.P., Everspaugh, A., Patel, J.M.: Indexing large trajectory data sets with SETI. In: CIDR, pp. 164–175 (2003)Google Scholar
  6. 6.
    Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitised line or its caricature. Can. Cartogr. 10(2), 112–122 (1973)CrossRefGoogle Scholar
  7. 7.
    Driscoll, J., Sarnak, N., Sleator, D., Tarjan, R.E.: Making data structures persistent. In: STOC (1986)Google Scholar
  8. 8.
    Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures persistent. J. Comput. Syst. Sci. 38(1), 86–124 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in time-series databases. In: SIGMOD, pp. 419–429 (1994)Google Scholar
  10. 10.
    Güting, R.H., Bhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A foundation for representing and querying moving objects. TODS 25(1), 1–42 (2000)Google Scholar
  11. 11.
    Guttman, A.: R‑trees: A dynamic index structure for spatial searching. In: SIGMOD, pp. 47–57 (1984)Google Scholar
  12. 12.
    Hadjieleftheriou, M., Kollios, G., Tsotras, V.J., Gunopulos, D.: Indexing spatiotemporal archives. VLDB J. 15(2), 143–164 (2006)CrossRefGoogle Scholar
  13. 13.
    Keogh, E.J., Chu, S., Hart, D., Pazzani, M.J.: An online algorithm for segmenting time series. In: ICDM, pp. 289–296 (2001)Google Scholar
  14. 14.
    Kolesnikov, A.: Efficient algorithms for vectorization and polygonal approximation. PhD thesis, University of Joensuu, Finland, (2003)Google Scholar
  15. 15.
    Kollios, G., Tsotras, V.J., Gunopulos, D., Delis, A., Hadjieleftheriou, M.: Indexing animated objects using spatiotemporal access methods. TKDE 13(5), 758–777 (2001)Google Scholar
  16. 16.
    Kumar, A., Tsotras, V.J., Faloutsos, C.: Designing access methods for bitemporal databases. TKDE 10(1), 1–20 (1998)CrossRefGoogle Scholar
  17. 17.
    Lomet, D., Salzberg, B.: Access methods for multiversion data. In: SIGMOD, pp. 315–324 (1989)Google Scholar
  18. 18.
    Nascimento M., Silva, J.: Towards historical R‑trees. In: SAC, pp. 235–240 (1998)Google Scholar
  19. 19.
    Pagel, B.-U., Six, H.-W., Toben, H., Widmayer, P.: Towards an analysis of range query performance in spatial data structures. In: PODS, pp. 214–221 (1993)Google Scholar
  20. 20.
    Pavlidis, T., Horovitz, S.L.: Segmentation of plane curves. IEEE Trans. Comput. 23(8), 860–870 (1974)zbMATHCrossRefGoogle Scholar
  21. 21.
    Pfoser, D., Jensen, C.S., Theodoridis, Y.: Novel approaches in query processing for moving object trajectories. In: VLDB, pp. 395–406 (2000)Google Scholar
  22. 22.
    Porkaew, K., Lazaridis, I., Mehrotra, S.: Querying mobile objects in spatio-temporal databases. In: SSTD, pp. 59–78 (2001)Google Scholar
  23. 23.
    Tao, Y., Papadias, D.: MV3R-Tree: A spatio-temporal access method for timestamp and interval queries. In: VLDB, pp. 431–440 (2001)Google Scholar
  24. 24.
    Theodoridis, Y., Sellis, T., Papadopoulos, A., Manolopoulos, Y.: Specifications for efficient indexing in spatiotemporal databases. In: SSDBM, pp. 123–132 (1998)Google Scholar
  25. 25.
    Tzouramanis, T., Vassilakopoulos, M., Manolopoulos, Y.: Overlapping linear quadtrees and spatio-temporal query processing. Comput. J. 43(3), 325–343 (2000)zbMATHCrossRefGoogle Scholar
  26. 26.
    Varman, P.J., Verma, R.M.: An efficient multiversion access structure. TKDE 9(3), 391–409 (1997)Google Scholar
  27. 27.
    Zhu, H., Su, J., Ibarra, O.H.: Trajectory queries and octagons in moving object databases. In: CIKM, pp. 413–421 (2002)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Marios Hadjieleftheriou
    • 1
  • George Kollios
    • 2
  • Vassilis J. Tsotras
    • 3
  • Dimitrios Gunopulos
    • 3
  1. 1.AT&T Inc.Florham ParkUSA
  2. 2.Computer Science DepartmentBoston UniversityBostonUSA
  3. 3.Computer Science DepartmentUniversity of California RiversideRiversideUSA