Encyclopedia of GIS

2008 Edition
| Editors: Shashi Shekhar, Hui Xiong

Hydrologic Impacts, Spatial Simulation

  • Graeme Aggett
  • Chris McColl
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-35973-1_574


Hydrologic modeling and hydraulic modeling with GIS; Hydrogeology


Spatial simulation of future hydrologic impacts involves deterministic or probabilistic modeling approaches that attempt to simulate likely changes in hydrology, and subsequent hydrologic response (impacts) of these changes, for a particular study area. The modeling approach might be focused on understanding the spatial impacts of predicted hydrologic changes (e. g. rainfall intensity), and/or changes in parameters impacting rainfall-runoff response and flow routing (e. g. changing land use). The goal is to produce spatial (map) and other data outputs that can assist planners and managers better understand the spatial ramifications of an uncertain future. Where appropriate and possible, estimates of uncertainty should be embedded in the map output. This information might be used to develop more informed and hence effective land use plans, flood mitigation strategies, or management strategies for...


Geographic Information System Runoff Volume Hydraulic Model Flood Mitigation Hydrologic Impact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Aggett, G.R., Wilson, J.P.: Creating and coupling a high-resolution DEM with a 1-D hydraulic model in a GIS for scenario-based assessment of avulsion in a gravel-bed river. Geomorphology, in review (2007)Google Scholar
  2. 2.
    Beighley, R.E., Melack, M., Dunne, T.: Impacts of California's climatic regimes and coastal land use change on streamflow characteristics. J. Am. Water Resour. Assoc. 39(6), 1419–1433 (2003)CrossRefGoogle Scholar
  3. 3.
    Burrough, P.A.: Fuzzy mathematical methods for soil survey and land evaluation. J. Soil Sci. 40, 477–492 (1989)CrossRefGoogle Scholar
  4. 4.
    Burrough, P.A.: Natural Objects with Indeterminate Boundaries. In: Burrough, P.A., Frank, A.U. (eds.) Geographic Objects with Indeterminate Boundaries, pp. 345. Taylor & Francis, Ltd., London (1996)Google Scholar
  5. 5.
    Burrough, P.A., van Gaans, P.F.M., Hootsmans, R.: Continuous classification in soil survey: spatial correlation, confusion and boundaries. Geoderma, 77, 115–135 (1997)CrossRefGoogle Scholar
  6. 6.
    de Bruin, S.: Querying probablistic land cover data using fuzzy set theory. Int. J. Geogr. Inf. Sci. 14(4), 359–372 (2000)CrossRefGoogle Scholar
  7. 7.
    Di Luzio, M., Srinivasan, R., Arnold, J.G.: A GIS-coupled hydrological model system for the watershed assessment of agricultural nonpoint and point sources of pollution. Transactions in GIS 8(1), 113–136 (2004)CrossRefGoogle Scholar
  8. 8.
    Hunter, G.J., Goodchild, M.F.: Communicating uncertainty in spatial databases. Transactions in GIS 1(1), 13–24 (1996)CrossRefGoogle Scholar
  9. 9.
    Kalin, L., Hantush, M.M.: Evaluation of sediment transport models and comparative application of two watershed models (U.S. Environmental Protection Agency, National Risk Management Research Laboratory Paper EPA/600/R-03/139). U.S. Environmental Protection Agency, Cincinnati, OH (2003)Google Scholar
  10. 10.
    Legleiter, C.J., Goodchild, M.F.: Alternative representations of in-stream habitat: classification using remote sensing, hydraulic modeling, and fuzzy logic. Int. J. Geogr. Inf. Sci. 19(1), 29–50 (2005)CrossRefGoogle Scholar
  11. 11.
    Liao, H., Tim, U.S.: An interactive modeling environment for non-point source pollution control. J. Am. Water Resour. Assoc. 3(3), 591–603 (1997)CrossRefGoogle Scholar
  12. 12.
    McColl, C., Aggett, G.: Land use forecasting and hydrologic model integration for improved land use decision support. J. Env. Manag. 84, 494–512 (2007)CrossRefGoogle Scholar
  13. 13.
    Miller, R.C., Guertin D.P, Heilman, P.: Information technology in watershed management decision making. J. Am. Water Resour. Assoc. 40(2), 349–357 (2004)CrossRefGoogle Scholar
  14. 14.
    Moglen, G.E., Gabriel, S.A., Faria, J.A.: A Framework for Quantitative Smart Growth in Land Development. J. Am. Water Resour. Assoc. 39(4), 947–959 (2003)CrossRefGoogle Scholar
  15. 15.
    Ogden, F.L., Garbrecht, J., DeBarry, P.A. Johnson, L.E.: GIS and distributed watershed models II: Modules, interfaces, and models. J. Hydrol. Eng. 6(6), 515–523 (2001)CrossRefGoogle Scholar
  16. 16.
    Santhi, C., Arnold, J.G., Williams, J.R., Hauck, L.M., Dugas, W.A.: Application of a watershed model to evaluate management effects on point and nonpoint source pollution. Transactions of the American Society of Agricultural Engineers 44(6), 1559–1570 (2001)Google Scholar
  17. 17.
    Srinivasan, R., Ramanarayanan, R., Arnold, J., Bednarz, S.: Large area hydrologic modeling and assessment part II: Model application. J. Am. Water Resour. Assoc. 34(1), 91–101 (1998)CrossRefGoogle Scholar
  18. 18.
    Suwanwerakamtorn, R.: GIS and hydrologic modeling for the management of small watersheds. Intern. J. Appl. Earth Obs. Geoinf. (ITC) 1994–4, 343–348 (1994)Google Scholar
  19. 19.
    Swan, D., Aggett, G.: Two-dimensional modeling of stream channel dynamics in the Naches River, Washington. Transactions in GIS, in review (2007)Google Scholar
  20. 20.
    United States Army Corps of Engineers: Hydrologic modeling system HEC-HMS: User's manual. USACE Hydrologic Engineering Center, Washington, DC (2001)Google Scholar
  21. 21.
    Warwick, J.J., Haness, S.J.: Efficacy of ARC/INFO GIS Application to Hydrologic Modeling, J. Water Resour. Plann Manag. 120(3), 366–381 (1994)CrossRefGoogle Scholar
  22. 22.
    Whiteaker, T.L., Robayo, O., Maidment, D.R., Obenour, D. From NEXRAD rainfall map to an inundation map. J. Hydrol. Eng. 11(1), 37–45 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Graeme Aggett
    • 1
  • Chris McColl
    • 2
  1. 1.Riverside Technology, Inc.Fort CollinsUSA
  2. 2.Department of GeographyCentral Washington UniversityEllensburgUSA