Encyclopedia of GIS

2008 Edition
| Editors: Shashi Shekhar, Hui Xiong

Uncertainty, Modeling with Spatial and Temporal

  • George Christakos
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-35973-1_1424

Synonyms

Knowledge synthesis; Spatial; Temporal; Bayesian maximum entropy; Uncertainty; Interdisciplinary

Definition

Keywords

Stochastic Theory Isolation Condition Total Ozone Mapping Spectrometer Bayesian Maximum Entropy Mental Entity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Christakos, G.: Modern Spatiotemporal Geostatistics. Oxford University Press, New York (2000)Google Scholar
  2. 2.
    Christakos, G., Bogaert, P., Serre, M.L.: Temporal GIS. Springer-Verlag, New York (2002)Google Scholar
  3. 3.
    Christakos, G.: Random field modelling and its applications in stochastic data processing. Ph.D. Thesis, Harvard University (1990)Google Scholar
  4. 4.
    Christakos, G.: On certain classes of spatiotemporal random fields with application to space-time data processing. IEEE Trans. Syst. Manuf. Cybernetics 21, 861–875, (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Christakos, G.: Random Field Models in Earth Sciences. Academic, San Diego (1992)Google Scholar
  6. 6.
    Goodall, C., Mardia, K.V.: Challenges in multivariate spatio-temporal modeling. In: Proceedings of the XVIIth International Biometric Conference, Hamilton, Ontario, Canada, 8–12 August 1994Google Scholar
  7. 7.
    Bogaert, P.: Comparison of kriging techniques in a space-time context. Math. Geol. 28, 73–86 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Kyriakidis, P.C., Journel, A.G.: Geostatistical space-time models: a review. Math. Geol. 31, 651–684 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Christakos, G.: A Bayesian/maximum-entropy view to the spatial estimation problem. Math. Geol. 22, 763–776 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Christakos, G., Olea, R.A., Serre, M.L., Yu, H.L., Wang, L.-L.: Interdisciplinary Public Health Reasoning and Epidemic Modelling: The Case of Black Death. Springer-Verlag, New York (2005)Google Scholar
  11. 11.
    Serre, M.L., Christakos, G.: Modern Geostatistics: Computational BME in the light of uncertain physical knowledge–The Equus Beds study. Stochastic Environ. Res. Risk Assess. 13, 1–26 (1999)zbMATHCrossRefGoogle Scholar
  12. 12.
    Serre, M.L., Kolovos, A., Christakos, G., Modis, K.: An application of the holistochastic human exposure methodology to naturally occurring arsenic in Bangladesh drinking water. Risk Anal. 23, 515–528 (2003)CrossRefGoogle Scholar
  13. 13.
    Bogaert, P., D'Or, D.: Estimating soil properties from thematic soil maps-The BME approach. Soil Sci. Soc. Am. J. 66, 1492–1500 (2002)CrossRefGoogle Scholar
  14. 14.
    Kolovos, A., Christakos, G., Serre, M.L., Miller, C.T.: Computational BME solution of a stochastic advection-reaction equation in the light of site-specific information. Water Res. Res. 38, 1318–1334 (2002)CrossRefGoogle Scholar
  15. 15.
    Papantonopoulos, G., Modis, K.: A BME solution of the stochastic three-dimensional Laplace equation representing a geothermal field subject to site-specific information. J. Stochastic Environ. Res. Risk Assess. 20, 23–32 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    K-M Choi, Christakos, G., Wilson, M.L.: El Niño effects on influenza mortality risks in the state of California. J. Public Health 120, 505–516 (2006)CrossRefGoogle Scholar
  17. 17.
    Savelieva, E., Demyanov, V., Kanevski, M., Serre, M.L., Christakos, G.: BME-based uncertainty assessment of the Chernobyl fallout. Geoderma 128, 312–324 (2005)CrossRefGoogle Scholar
  18. 18.
    Christakos, G., Li, X.: Bayesian maximum entropy analysis and mapping: A farewell to kriging estimators? Math. Geol. 30, 435–462 (1998)Google Scholar
  19. 19.
    Bogaert, P.: Spatial prediction of categorical variables: the BME approach. Stochastic Environ. Res. Risk Assess. 16, 425–448 (2002)zbMATHCrossRefGoogle Scholar
  20. 20.
    H-L Yu, Kolovos, A., Christakos, G., J-C Chen, Warmerdam, S., B. Dev. Interactive spatiotemporal modelling of health systems: The SEKS-GUI framework. In: Griffith, D.A., Christakos, G. (eds.) J. SERRA–Special Issue on Medical Geography as a Science of Interdisciplinary Knowledge Synthesis under Conditions of Uncertainty (2007, in press)Google Scholar
  21. 21.
    Douaik, A., van Meirvenne, M., Toth, T., Serre, M.L.: Space-time mapping of soil salinity using probabilistic BME. J Stochastic Environ. Res. Risk Assess. 18, 219–227 (2004)zbMATHGoogle Scholar
  22. 22.
    Quilfen, Y., Chapron, B., Collard, F., M.L Serre.: Calibration/validation of an altimeter wave period model and application to TOPEX/Poseidon and Jason-1 Altimeters. Mar. Geodesy 3/4, 27, 535–550 (2004)CrossRefGoogle Scholar
  23. 23.
    Serre, M.L., Christakos, G., Howes, J., Abdel-Rehiem, A.G.: Powering an Egyptian air quality information system with the BME space/time analysis toolbox: Results from the Cairo baseline year study. In: Monestiez, P., Allard, D., Froidevaux, R. (eds.) Geostatistics for Environmental Applications, pp. 91–100. Kluwer, Dordrecht (2001)CrossRefGoogle Scholar
  24. 24.
    Vyas, V.M., Tong, S.N., Uchrin, C., Georgopoulos, P.G., Carter, G.P.: Geostatistical estimation of horizontal hydraulic conductivity for the Kirkwood-Cohansey aquifer. J. Am. Water Res. Assoc. 40, 187–195 (2004)CrossRefGoogle Scholar
  25. 25.
    Christakos, G., Kolovos, A., Serre M.L., Vukovich, F.: Total ozone mapping by integrating data bases from remote sensing instruments and empirical models. IEEE Trans. Geosci. Remote Sensing 42, 991–1008 (2004)CrossRefGoogle Scholar
  26. 26.
    H-L Yu, Christakos, G.: Spatiotemporal modelling and mapping of the bubonic plague epidemic in India. Int.. J. Health Geogr. 5 (2006) Available via: http://www.ij-healthgeographics.com/content/5/1/12
  27. 27.
    Gesink-Law, D.C., Bernstein, K., Serre, M.L., Schumacher, C.M., Leone, P.A., Zenilman, J.M., Miller, W.C., Rompalo, A.M.: Modeling a syphilis outbreak through space and time using the BME approach. Ann. Epidemiol. 16, 797–804 (2006)CrossRefGoogle Scholar
  28. 28.
    Yu, H-L, Chen, J.-C., Christakos, G., Jerrett, M.: Estimating residential level ambient PM10 and Ozone exposures at multiple time-scales in the Carolinas with the BME method. In: Internal Report IR09, Geography Department, San Diego State University, San Diego, CA (2007)Google Scholar
  29. 29.
    Augustinraj, R.: A Study of Spatiotemporal Health Effects due to Water Lead Contamination. M.S. Thesis, University of North Carolina (2002)Google Scholar
  30. 30.
    Christakos, G.: On a deductive logic-based spatiotemporal random field theory. Probability Theor. Math. Stat. (Teoriya Imovirnostey ta Matematychna Statystyka) 66, 54–65 (2002)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • George Christakos
    • 1
  1. 1.Department of GeographySan Diego State UniversitySan DiegoUSA