Skip to main content

Space-Filling Curves

  • Reference work entry
Encyclopedia of GIS

Synonyms

Distance-preserving mapping; Locality-preserving mapping; Multi‐dimensional mapping; Linearization

Definition

A space-filling curve (SFC) is a way of mapping a multi‐dimensional space into a one‐dimensional space. It acts like a thread that passes through every cell element (or pixel) in the multi‐dimensional space so that every cell is visited exactly once. Thus, a space-filling curve imposes a linear order of points in the multi‐dimensional space. A D‑dimensional space-filling curve in a space of N cells (pixels) of each dimension consists of N D − 1 segments where each segment connects two consecutive D‑dimensional points. There are numerous kinds of space-filling curves (e. g., Hilbert, Peano, and Gray). The difference between such curves is in their way of mapping to the one‐dimensional space, i. e., the order that a certain space-filling curve traverses the multi‐dimensional space. The quality of a space-filling curve is measured by its ability to preserve the locality...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Recommended Reading

  1. Akinlar, C., Aref, W.G., Kamel, I., Mukherjee, S.: Automatic disks: The building block for a scalable distributed file system. In: Proc. of the 5th Intl. Workshop on Multimedia Information Systems, MIS, Palm Springs Desert, October 1999

    Google Scholar 

  2. Aref, W.G., Kamel, I., Ghandeharizadeh, S.: Disk scheduling in video editing systems. IEEE Trans. Knowl. Data Eng., TKDE 13(6),933–950 (2001)

    Article  Google Scholar 

  3. Asano, T., Ranjan, D., Roos, T., Welzl, E., Widmayer, P.: Space-filling curves and their use in the design of geometric data structures. Theor. Comput. Sci., TCS 181(1), 3–15 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bohm, C., Klump, G., Kriegel, H.-P.: xz-ordering: A space-filling curve for objects with spatial extension. In: Proc. of 6th Intl. Symp. on Large Spatial Databases, SSD, Hong Kong, July 1999, pp. 75–90

    Google Scholar 

  5. Breinholt, G., Schierz, C.: Algorithm 781: Generating hilbert's space-filling curve by recursion. ACM Trans. Math. Softw., TOMS 24(2),184–189 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Faloutsos, C.: Gray codes for partial match and range queries. IEEE Trans. Soft. Eng., TSE 14(10), 1381–1393 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  7. Faloutsos, C., Rong, Y.: Dot: A spatial access method using fractals. In: Proc. of Intl. Conf. on Data Engineering, ICDE, Kobe, Japan, April 1991, pp. 152–159

    Google Scholar 

  8. Gibson, G., Nagle, D., Amiri, K., Butler, J., Chang, F.W., Gobioff, H., Hardin, C., Riedel, E., Rochberg, D., Zelenka, J.: File server scaling with network-attached secure disks. In: Proc. of Intl. Conf. on Measurement and Modeling of Computer Systems, SIGMETRICS, Seatle, Washington, June 1997, pp. 272–284

    Google Scholar 

  9. Goldschlager, L.M.: Short algorithms for space-filling curves. Software–Practice and Experience, SPE 11(1), 99–100 (1981)

    Article  Google Scholar 

  10. Hilbert, D.: Über die stetige Abbildung einer Linie auf ein Flächenstück. Mathematische Annalen, 459–460 (1891)

    Google Scholar 

  11. Jagadish, H.V.: Linear clustering of objects with multiple attributes. In: Proc. of the intl. conf. on Management of data, SIGMOD, Atlantic City, NJ, June 1990, pp. 332–342

    Google Scholar 

  12. Kamel, I., Faloutsos, C.: Hilbert r-tree: An improved r-tree using fractals. In: Proc. of the 20th Intl. Conf. on Very Large Data Bases, VLDB, Santiago, Chile, September 1994, pp. 500–509

    Google Scholar 

  13. Lawder, J.K., King, P.J.H.: Querying multi‐dimensional data indexed using the hilbert space filling curve. SIGMOD Record 30(1), (2001)

    Google Scholar 

  14. Liao, S., Lopez, M.A., Leutenegger, S.T.: High dimensional similarity search with space-filling curves. In: Proc. of Intl. Conf. on Data Engineering, ICDE, Heidelberg, Germany, April 2001, pp. 615–622

    Google Scholar 

  15. Mandelbrot, B.B.: Fractal Geometry of Nature. W.H. Freeman, New York (1977)

    Google Scholar 

  16. Mellor-Crummey, J.M., Whalley, D.B., Kennedy, K.: Improving memory hierarchy performance for irregular applications. In: Proc. of the Intl. Conf. on Supercomputing, ICS, Rhodes, Greece, June 1999, pp. 425–433

    Google Scholar 

  17. Mokbel, M.F., Aref, W.G.: Irregularity in multi‐dimensional space-filling curves with applications in multimedia databases. In: Proc. of the 2nd Intl. Conf. on Information and knowledge Management, CIKM, Atlanta, GA, November 2001, pp. 512–519

    Google Scholar 

  18. Mokbel, M.F., Aref, W.G., El-Bassyouni, K., Kamel, I.: Scalable Multimedia Disk Scheduling. In: Proceedings of the International Conference on Data Engineering, ICDE, Boston, MA, March 2004, pp. 498–509

    Google Scholar 

  19. Mokbel, M.F., Aref, W.G., Kamel, I.: Performance of Multi-Dimensional Space-Filling Curves. In: Proceedings of the ACM Symposium on Advances in Geographic Information Systems, ACM GIS, McLean, VA, November 2002. pp. 149–154

    Google Scholar 

  20. Mokbel, M.F., Aref, W.G., Kamel, I.: Analysis of Multi‐dimensional Space-Filling Curves. GeoInformatica 7(3), 179–209 (2003)

    Article  Google Scholar 

  21. Moon, B., Jagadish, H.V., Faloutsos, C., Salz, J.: Analysis of the clustering properties of hilbert space-filling curve. IEEE Trans. Knowl. Data Eng., TKDE 13(1), 124–141 (2001)

    Article  Google Scholar 

  22. Moore, E.H.: On certain crinkly curves. Trans. Am. Math. Soc. 72–90 (1900)

    Google Scholar 

  23. Niedermeier, R., Reinhardt, K., Sanders, P.: Towards optimal locality in mesh-indexing. In: Proc. of the 11th Intl. Symp. on Fundamentals of Computation Theory, FCT, Krakow, Poland, September 1997, pp. 364–375

    Google Scholar 

  24. Orenstein, J.A.: Spatial query processing in an object‐oriented database system. In: Proc. of the intl. conf. on Management of data, SIGMOD, Washington D.C., May 1986, pp. 326–336

    Google Scholar 

  25. Ou, C.-W., Gunwani, M., Ranka, S.: Architecture-independent locality-improving transformations of computational graphs embedded in k-dimensions. In: Proc. of the 9th ACM Intl. Conf. on Supercomputing, ICS, Barcelona, Spain, July 1995, pp. 289–298

    Google Scholar 

  26. Peano, G.: Sur une courbe qui remplit toute une air plaine. Mathematishe Annalen 36, 157–160 (1890)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sagan, H.: Space Filling Curves. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  28. Sierpinski, W.: Sur une nouvelle courbe qui remplit toute une aire plaine. Bull. Acad. Sci. Cracovie, SerieA 462–478 (1912)

    Google Scholar 

  29. Witten, I.H., Wyvill, B.: On the generation and use of space-filling curves. Software – Practice and Experience 3, 519–525 (1983)

    Article  Google Scholar 

  30. Zhang, Y., Webber, R.E.: Space diffusion: An improved parallel halftoning technique using space-filling curves. In: Computer Graphics Proc., August 1993, pp. 305–312

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Mokbel, M., Aref, W. (2008). Space-Filling Curves. In: Shekhar, S., Xiong, H. (eds) Encyclopedia of GIS. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-35973-1_1233

Download citation

Publish with us

Policies and ethics