Computer Vision

2014 Edition
| Editors: Katsushi Ikeuchi

Scale Selection

  • Tony Lindeberg
Reference work entry


Related Concepts


The notion of scale selection refers to methods for estimating characteristic scales in image data and for automatically determining locally appropriate scales in a scale-space representation, so as to adapt subsequent processing to the local image structure and compute scale-invariant image features and image descriptors.

An essential aspect of the approach is that it allows for a bottom-up determination of inherent scales of features and objects without first recognizing them or delimiting, alternatively segmenting, them from their surroundings.

Scale selection methods have also been developed from other viewpoints of performing noise suppression and exploring top-down information.


The concept of scaleis essential when computing features and descriptors from image data. Real-world objects may contain different types of...

This is a preview of subscription content, log in to check access.


  1. 1.
    Bay H, Ess A, Tuytelaars T, van Gool (2008) Speeded up robust features (SURF). Comput Vis Image Underst 110(3):346–359CrossRefGoogle Scholar
  2. 2.
    Bretzner L, Lindeberg T (1998) Feature tracking with automatic selection of spatial scales. Comput Vis Image Underst 71(3):385–392CrossRefGoogle Scholar
  3. 3.
    Crowley J, Riff O (2003) Fast computation of scale normalised receptive fields. In: Proceedings of scale-space'03. Lecture Notes in Computer Science, vol 2695. Springer, Berlin/New York, pp 584–598Google Scholar
  4. 4.
    Elder JH, Zucker SW (1998) Local scale control for edge detection and blur estimation. IEEE Trans Pattern Anal Mach Intell 20(7):699–716CrossRefGoogle Scholar
  5. 5.
    Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am 4:2379–2394CrossRefGoogle Scholar
  6. 6.
    Frangi AF, Niessen WJ, Hoogeveen RM, vanWalsum T, Viergever MA (2000) Model-based quantitation of 3D magnetic resonance angiographic images. IEEE Trans Med Imaging 18(10):946–956CrossRefGoogle Scholar
  7. 7.
    Kadir T, Brady M (2001) Saliency, scale and image description. Int J Comput Vis 45(2):83–105CrossRefzbMATHGoogle Scholar
  8. 8.
    Koenderink JJ (1984) The structure of images. Biol Cybern 50:363–370MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Krissian K, Malandain G, Ayache N, Vaillant R, Trousset Y (2000) Model-based detection of tubular structures in 3D images. Comput Vis Image Underst 80(2):130–171CrossRefzbMATHGoogle Scholar
  10. 10.
    Lindeberg T (1994) Scale-space theory in computer vision. The Springer international series in engineering and computer science. Springer, Berlin/New YorkGoogle Scholar
  11. 11.
    Lindeberg T (1998) Feature detection with automatic scale selection. Int J Comput Vis 30(2):77–116Google Scholar
  12. 12.
    Lindeberg T (1998) Edge detection and ridge detection with automatic scale selection. Int J Comput Vis 30(2):117–154CrossRefGoogle Scholar
  13. 13.
    Lindeberg T (1998) A scale selection principle for estimating image deformations. Image Vis Comput 16(14):961–977CrossRefGoogle Scholar
  14. 14.
    . Lindeberg T (2008) Scale-space. In: Wah B (ed.) Encyclopedia of computer science and engineering. Wiley, pp 2495–2504. Also available from tony/abstracts/Lin08-EncCompSci.html
  15. 15.
    . Lindeberg T (2010) Interest point from scale-space features: scale-space primal sketch for differential descriptors International Journal of Computer VisionGoogle Scholar
  16. 16.
    Lindeberg T (2013) Scale selection properties of generalized scale-space interest point detectors. J Mathematical Imaging and Vision, 46(2):177–210MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lindeberg T, Bretzner L (2003) Real-time scale selection in hybrid multi-scale representations. In: Proceedings of Scale-Space Methods in Computer Vision. Lecture Notes in Computer Science, vol 2695. Springer, Berlin/New York, pp 148–163CrossRefGoogle Scholar
  18. 18.
    Loog M, Li Y, Tax D (2009) Maximum membership scale selection. In: Multiple Classifier Systems. Lecture Notes in Computer Science, vol 5519. Springer, Berlin, pp 468–477.CrossRefGoogle Scholar
  19. 19.
    Li Y, Tax DMJ, Loog M (2012) Supervised scale-invariant segmentation (and detection). In: Proc. Scale Space and Variational Methods in Computer Vision (Scale-Space'11), Ein Gedi, Israel. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, pp 350–361CrossRefGoogle Scholar
  20. 20.
    Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110CrossRefGoogle Scholar
  21. 21.
    Mikolajczyk K, Schmid C (2004) Scale and affine invariant interest point detectors. Int J Comput Vis 60(1):63–86CrossRefGoogle Scholar
  22. 22.
    Mrázek P, Navara M (2003) Selection of optimal stopping time for nonlinear diffusion filtering. Int J Comput Vis 52(2–3):189–203CrossRefGoogle Scholar
  23. 23.
    Negre A, Braillon C, Crowley JL, Laugier C (2008) Real-time time-to-collision from variation of intrinsic scale. Exp Robot 39:75–84CrossRefGoogle Scholar
  24. 24.
    Sato Y, Nakajima S, Shiraga N, Atsumi H, Yoshida S, Koller T, Gerig G, Kikinis R (1998) 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med Image Anal 2(2):143–168CrossRefGoogle Scholar
  25. 25.
    Sporring J, Colios, CJ, Trahanias, PE (2000) Generalized scale-selection. In: Proc. International Conference on Image Processing (ICIP'00), Vancouver, Canada, pp 920–923Google Scholar
  26. 26.
    Witkin AP (1983) Scale-space filtering. In: Proceedings of 8th International Joint Conference on Artificial Intelligence, Karlsruhe, Germany, pp 1019–1022Google Scholar
  27. 27.
    Lindeberg T (2013) Invariance of visual operations at the level of receptive fields. PLoS ONE 8(7): e66990. doi:10.1371/journal.pone.0066990CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Tony Lindeberg
    • 1
  1. 1.School of Computer Science and Communication, KTH Royal Institute of TechnologyStockholmSweden