A Brief Introduction to MEMS and NEMS

  • Wendy C. CroneEmail author
Part of the Springer Handbooks book series (SHB)


The expanding and developing fields of micro-electromechanical systems (MEMS) and nano-electromechanical (NEMS) are highly interdisciplinary and rely heavily on experimental mechanics for materials selection, process validation, design development, and device characterization. These devices range from mechanical sensors and actuators, to microanalysis and chemical sensors, to micro-optical systems and bioMEMS for microscopic surgery. Their applications span the automotive industry, communications, defense systems, national security, health care, information technology, avionics, and environmental monitoring. This chapter gives a general introduction to the fabrication processes and materials commonly used in MEMS/NEMS, as well as a discussion of the application of experimental mechanics techniques to these devices. Mechanics issues that arise in selected example devices are also presented.


Residual Stress Chemical Vapor Deposition Particle Image Velocimetry Silicon Nitride Microfluidic Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



atomic force microscopy


American Society for Testing and Materials


carbon nanotube


chemical vapor deposition


digital image correlation


digital micromirror device


dip-pen nanolithography


deep reactive-ion etching


electric-discharge machining


ethylenediamine pyrochatechol


focused ion beam


giant magnetoresistance


2-hydroxyethyl methacrylate


lithography galvanoforming molding


low-pressure CVD


micro-electromechanical system


nanoelectromechanical system




particle image velocimetry


polymethyl methacrylate


physical vapor deposition


polyvinylidene fluoride


scanning acoustic microscopy


self-assembled monolayer


Society for Experimental Mechanics


scanning electron microscopy


shape-memory alloy


silicon on insulator


scanning probe microscope


scanning tunneling microscope


tetramethylammonium hydroxide


  1. 9.1.
    N. Maluf: An Introduction to Microelectromechanical Systems Engineering (Artech House, Boston 2000)Google Scholar
  2. 9.2.
    B. Bhushan (Ed.): Springer Handbook of Nanotechnology (Springer, Berlin, Heidelberg 2006)Google Scholar
  3. 9.3.
    Small Tech Business Directory™ Guide, Small Times Media, Accessed July 20, 2007.Google Scholar
  4. 9.4.
    J.C. Eloy: The MEMS industry: Current and future trends, OnBoard Technol., 22–24 (2006), (Accessed July 20, 2007)Google Scholar
  5. 9.5.
    NewswireToday: Nanorobotics and NEMS to Reach $830.4 million by 2011, 05/31/2007, (Accessed July 20, 2007)Google Scholar
  6. 9.6.
    B. Ziaie, A. Baldi, M. Lei, Y. Gu, R.A. Siegel: Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery, Adv. Drug Deliv. Rev. 56, 145–172 (2004)Google Scholar
  7. 9.7.
    S. Beeby, G. Ensell, M. Kraft, N. White: MEMS Mechanical Sensors (Artech House, Boston 2004)Google Scholar
  8. 9.8.
    H.G. Craighead: Nanoelectromechanical systems, Science 290, 1532–1536 (2000)Google Scholar
  9. 9.9.
    M. Koch, A.G.R. Evans, A. Brunnschweiler: Microfluidic Technology and Applications (Research Studies, Baldock 2000)Google Scholar
  10. 9.10.
    G.T.A. Kovacs: Micromachined Transducers – Sourcebook (McGraw-Hill, New York 1998)Google Scholar
  11. 9.11.
    K.L. Ekinci: Electromechanical transducers at the nanoscale: Actuation and sensing of motion in nanoelectromechanical systems (NEMS), Small 1(8-9), 786–797 (2005)Google Scholar
  12. 9.12.
    K.L. Ekinci, M.L. Roukes: Nanoelectromechanical systems, Rev. Sci. Instrum. 76(061101), 1–12 (2005)Google Scholar
  13. 9.13.
    P. Gammel, G. Fischer, J. Bouchaud: RF MEMS and NEMS technology, devices, and applications, Bell Labs Tech. J. 10(3), 29–59 (2005)Google Scholar
  14. 9.14.
    W.A. Goddard III, D.W. Brenner, S.E. Lyshevski, G.J. Iafrate (Eds.): Handbook of Nanoscience, Engineering and Technology (CRC, Boca Raton 2002)Google Scholar
  15. 9.15.
    S.E. Lyshevski: Nano- and Microelectromechanical Systems: Fundamentals of Nano- and Microengineering (CRC, Boca Raton 2000)Google Scholar
  16. 9.16.
    T.S. Tighe, J.M. Worlock, M.L. Roukes: Direct thermal conductance measurements on suspended monocrystalline nanostructures, Appl. Phys. Lett. 70(20), 2687–2689 (1997)Google Scholar
  17. 9.17.
    R.G. Knobel, A.N. Cleland: Nanometre-scale displacement sensing using a single electron transistor, Nature 424(6946), 291–293 (2003)Google Scholar
  18. 9.18.
    S.D. Senturia: Microsystem Design (Kluwer Academic, Boston 2001)Google Scholar
  19. 9.19.
    SEM: Society for Experimental Mechanics, Bethel, 2007 SEM Annual Conference Proceedings, Springfield (2007).Google Scholar
  20. 9.20.
    MEMS and Nanotechnology Clearinghouse: Material Index, (Accessed July 20, 2007)Google Scholar
  21. 9.21.
    P. Lange, M. Kirsten, W. Riethmuller, B. Wenk, G. Zwicker, J.R. Morante, F. Ericson, J.A. Schweitz: Thisck polycrystalline silicon for surface micro-mechanical applications: deposition, structuring and mechanical characterization, 8th International conference on solid-state sensors and actuators (Transducers ʼ95), Stockholm (1995) pp. 202–205Google Scholar
  22. 9.22.
    M. Madou: Fundamentals of Microfabrication (CRC, Boca Raton 1997)Google Scholar
  23. 9.23.
    B. Diem, M.T. Delaye, F. Michel, S. Renard, G. Delapierre: SOI(SIMOX) as a substrate for surface micromachining of single crystalline silicon sensors and actuators, 7th International Conference on Solid-State Sensors and Actuators (Transducers ʼ93), Yokohama (1993) pp. 233–236Google Scholar
  24. 9.24.
    J.M. Noworolski, E. Klaassen, J. Logan, K. Petersen, N. Maluf: Fabricationof SOI wafers with buried cavities using silicon fusion bonding ans electrochemical etchback, 8-th International conference on solid-state sensors and actuators (Transducers ʼ95), Stockholm (1995) pp. 71–74Google Scholar
  25. 9.25.
    T. Ikeda: Fundamentals of Piezoelectricity (Oxford Univ., New York 1990)Google Scholar
  26. 9.26.
    P. Gluche, A. Floter, S. Ertl, H.J. Fecht: Commercial applications of diamond-based nano- and microtechnolgy. In: The Nano-Micro Interface, ed. by H.-J. Fecht, M. Werner (Wiley-VCH, Weinheim 2004) pp. 247–262Google Scholar
  27. 9.27.
    S. Cho, I. Chasiotis, T.A. Friedmann, J.P. Sullivan: Youngʼs modulus, Poissonʼs ratio and failure properties of tetrahedral amorphous diamond-like carbon for MEMS devices, J. Micromech. Microeng. 15, 728–735 (2005)Google Scholar
  28. 9.28.
    A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D.C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, M.Q. Ding: Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices, Diamond Relat. Mater. 10(11), 1952–1961 (2001)Google Scholar
  29. 9.29.
    D. Gruen: Nanocrystalline diamond films, Annu. Rev. Mater. Sci. 29, 211–259 (1999)Google Scholar
  30. 9.30.
    D.M. Gruen, S. Liu, A.R. Krauss, J. Luo, X. Pan: Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions, Appl. Phys. Lett. 64, 1502–1504 (1994)Google Scholar
  31. 9.31.
    D.M. Gruen, S. Liu, A.R. Krauss, X. Pan: Buckyball microwave plasmas – fragmentation and diamond-film growth, J. Appl. Phys. 75, 1758–1763 (1994)Google Scholar
  32. 9.32.
    S.J. Clarson, J.A. Semlyen (Eds.): Siloxane Polymers (Prentice Hall, Englewood Cliffs 1993)Google Scholar
  33. 9.33.
    C. Liu: Foundations of MEMS (Pearson Education, Upper Saddle River 2006)Google Scholar
  34. 9.34.
    K. Otsuka, C.M. Wayman (Eds.): Shape Memory Materials (Cambridge Univ. Press, Cambridge 1998)Google Scholar
  35. 9.35.
    H.-J. Fecht, M. Werner: The Nano-Micro Interface (Wiley-VCH, Weinheim 2004)Google Scholar
  36. 9.36.
    M.J. Yacamaìn, T. Tsakalakos, B.H. Kear (Eds.): Proceedings of the First International Conference on Nanostructured Materials, Cancun, Nanostruct. Mater. 3(1/6), 22–26 (1993)Google Scholar
  37. 9.37.
    V.E. Borisenko, S. Ossicini: What is What in the Nanoworld (Wiley-VCH, Weinheim 2004)Google Scholar
  38. 9.38.
    B.D. Busbee, S.O. Obare, C.J. Murphy: An improved synthesis of high-aspect-ratio gold nanorods, Adv. Mater. 15(5), 414–416 (2003)Google Scholar
  39. 9.39.
    F. Favier, E.C. Walter, M.P. Zach, T. Benter, R.M. Penner: Hydrogen sensors and switches from electrodeposited palladium mesowire arrays, Science 293(5538), 2227–2231 (2001)Google Scholar
  40. 9.40.
    M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Webber, R. Russo, P.D. Yang: Room-temperature ultraviolet nanowire nanolasers, Science 292(5523), 1897–1899 (2001)Google Scholar
  41. 9.41.
    R.M. Penner, C.R. Martin: Preparation and electrochemical characterization of ultramicroelectrode ensembles, Anal. Chem. 59(21), 2625–2630 (1987)Google Scholar
  42. 9.42.
    J.C. Hulteen, C.R. Martin: A general template-based method for the preparation of nanomaterials, J. Mater. Chem. 7(7), 1075–1087 (1997)Google Scholar
  43. 9.43.
    S. K. Chakarvarti: Science and art of synthesis and crafting of nano/microstructures and devices using ion-crafted templates: A review, Proc. SPIE 61702(61720G), 1–9 (2006)Google Scholar
  44. 9.44.
    M.S. Dresselhaus, Y.-M. Lin, O. Rabin, M.R. Black, G. Dresselhaus: Nanowires. In: Springer Handbook of Nanotechnology, ed. by B. Bhushan (Springer, Berlin, Heidelberg 2007)Google Scholar
  45. 9.45.
    W.R. DeVries: Analysis of Material Removal Processes (Springer, New York 1992)Google Scholar
  46. 9.46.
    S. Kalpajian: Manufacturing Processes for Engineering Materials (Addison-Wesley, Reading 1984)Google Scholar
  47. 9.47.
    N. Taniguchi: Current status in, and future trends of, ultraprecision machining and ultrafine materials processing, Ann. CIRP 32, S573–S582 (1983)Google Scholar
  48. 9.48.
    C. Evans: Precision Engineering (Cranfield, Cranfield 1989)Google Scholar
  49. 9.49.
    J.M. Bustillo, R.T. Howe, R.S. Muller: Surface micromachining for microelectromechanical systems, Proc. IEEE 86(8), 1559–1561 (1998)Google Scholar
  50. 9.50.
    M. Gentili, C. Giovannella, S. Selci (Eds.): Nanolithography (Kluwer Academic, Boston 1994)Google Scholar
  51. 9.51.
    K.R. Williams, R.S. Muller: Etch rates for micromachining processing, J. Microelectromech. Syst. 5(4), 256–269 (1996)Google Scholar
  52. 9.52.
    B. Li, X. Tang, H. Xie, X. Zhang: Strain analysis in MEMS/NEMS structures and devices by using focused ion beam system, Sens. Actuator A 111(1), 57–62 (2004)Google Scholar
  53. 9.53.
    H. Xie, Z. Liu, H. Shang, Q. Xue, J. Jia, D. Fang: Micro/nano grating and its application to moire measurement, Proc. SPIE 5852, 740–744 (2005)Google Scholar
  54. 9.54.
    Sandia National Laboratories, Micromachines: SAMPLES™ Program, (Accessed July 20, 2007)Google Scholar
  55. 9.55.
    H. Guckel: High-aspect ratio micromachining via deep x-ray lithography, Proc. IEEE 86(8), 1586–1593 (1998)Google Scholar
  56. 9.56.
    E.W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Munchmeyer: Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process), Microelectron. Eng. 4(1), 35–56 (1986)Google Scholar
  57. 9.57.
    P. Bley, W. Menz, W. Bacher, K. Feit, M. Harmening, H. Hein, J. Mohr, W.K. Schomburg, W. Stark: Application of the LIGA process in fabrication of three-dimensional mechanical microstructures, 4th International Symposium on MicroProcess Conference Kanazawa (1991) pp. 384–389Google Scholar
  58. 9.58.
    J.L. Wilbur, G.M. Whitesides: Self-assembly and self-assembled monolayers in micro- and nanofabrication. In: Nanotechnology, ed. by G. Timp (Springer, New York 1999) pp. 331–369Google Scholar
  59. 9.59.
    G.M. Whitesides, J.P. Mathias, C.T. Seto: Molecular self-assembly and nanochemistry: a chemical strategy for synthesis of nanostructures, Science 254, 1312–1318 (1991)Google Scholar
  60. 9.60.
    G.M. Whitesides: Self-assembling materials, Sci. Am. 273, 146–149 (1995)Google Scholar
  61. 9.61.
    H. Ringsdorf, B. Schlarb, J. Venzmer: Molecular architecture and function of polymeric oriented systems: Models for the study of organization, surface recognition, and dynamics, Angew. Chem. Int. Ed. Engl. 27, 113–158 (1988)Google Scholar
  62. 9.62.
    G.M. Whitesides, P.E. Laibinis: Wet chemical approaches to the characterization of organic surfaces. Self-assembled monolayers, wetting, and the physical-organic chemistry of the solid-liquid interface, Langmuir 6(1), 87–96 (1990)Google Scholar
  63. 9.63.
    L.H. Dubois, R.G. Nuzzo: Synthesis, structure, and properties of model organic-surfaces, Annu. Rev. Phys. Chem. 43, 437–463 (1992)Google Scholar
  64. 9.64.
    A. Ulman: Surface-absorption of monolayers, Mater. Res. Soc. Bull. 20(6), 46–51 (1995)Google Scholar
  65. 9.65.
    A.R. Bishop, R.G. Nuzzo: Self-assembled monolayers: Recent developments and applications, Curr. Opin. Coll. Interface Sci. 1(1), 127–136 (1996)Google Scholar
  66. 9.66.
    Y. Xia, G.M. Whitesides: Soft lithography, Annu. Rev. Mater. Sci 28, 153–184 (1998)Google Scholar
  67. 9.67.
    E. Delamarche, H. Schmid, H.A. Biebuyck, B. Michel: Stability of molded polydimethylsiloxane microstructures, Adv. Mater. 9(9), 741–746 (1997)Google Scholar
  68. 9.68.
    J.A. Preece, J.F. Stoddart: Concept transfer from biology to materials, Nanobiology 3, 149–166 (1994)Google Scholar
  69. 9.69.
    J.A. Stroscio, D.M. Eigler: Atomic and molecular manipulation with the scanning tunneling microscope, Science 254, 1319–1326 (1991)Google Scholar
  70. 9.70.
    D. Eigler: From the bottom up: building things with atoms. In: Nanotechnology, ed. by G. Timp (Springer, New York 1999) pp. 331–369Google Scholar
  71. 9.71.
    R.D. Piner, J. Zhu, F. Xu, S. Hong, C.A. Mirkin: “Dip-pen” nanolithography, Science 283, 661–663 (1999)Google Scholar
  72. 9.72.
    D. Bullen, X. Wang, J. Zou, S.-W. Chung, C.A. Mirkin, C. Liu: Design, fabrication, and characterization of thermally actuated probe arrays for Dip Pen nanolithography, J. Microelectromech. Syst. 13(4), 594–602 (2004)Google Scholar
  73. 9.73.
    Q. Tang, S.-Q. Shi, L. Zhou: Nanofabrication with atomic force microscopy source, J. Nanosci. Nanotechnol. 4(8), 948–963 (2004)Google Scholar
  74. 9.74.
    W.N. Sharpe, K.T. Turner, R.L. Edwards: Tensile testing of polysilicon, Exp. Mech. 39(3), 162–70 (1999)Google Scholar
  75. 9.75.
    S.F. Bart, T.A. Lober, R.T. Howe, M.F. Schlecht: Design considerations for micromachined electric actuators, Sens. Actuator 14, 269–292 (1988)Google Scholar
  76. 9.76.
    D.W. Carr, L. Sekaric, H.G. Craighead: Measurement of nanomechanical resonant structures in single-crystal silicon, J. Vac. Sci. Technol. B 16(6), 3821–3824 (1998)Google Scholar
  77. 9.77.
    W.S. Trimmer (Ed.): Micromechanics and MEMS (IEEE, New York 1997)Google Scholar
  78. 9.78.
    W.N. Sharpe: Mechanical properties of MEMS materials. In: MEMS handbook, ed. by M. Gad-el-Hak (CRC, Boca Raton 2002)Google Scholar
  79. 9.79.
    V.T. Srikar, S.M. Spearing: A critical review of microscale mechanical testing methods used in the design of microelectromechanical systems, Exp. Mech. 43(3), 238–247 (2003)Google Scholar
  80. 9.80.
    M.A. Haque, M.T.A. Saif: A review of MEMS-based microscale and nanoscale tensile and bending testing, Exp. Mech. 43(3), 248–255 (2003)Google Scholar
  81. 9.81.
    T. Yi, C.J. Kim: Measurement of mechanical properties of MEMS materials, Meas. Sci. Tech. 10, 706–716 (1999)Google Scholar
  82. 9.82.
    C. Gorecki (Ed.): Microsystems Metrology and Inspection, Proc. EuroOpto Ser, Vol. 3825 (The Society of Photo-Optical Instrumentation Engineers, Washington 1999)Google Scholar
  83. 9.83.
    W.C. Young, R.G. Budynas: Roarkʼs Formulas for Stress and Strain (McGraw-Hill, New York 2002)Google Scholar
  84. 9.84.
    ASTM International: ASTM E2245-05, Standard Test Method for Residual Strain Measurements of Thin, Reflecting Films Using an Optical Interferometer (2005)Google Scholar
  85. 9.85.
    M.G. Allen, M. Mehregany, R.T. Howe, S.D. Senturia: Microfabricated structures for the in-situ measurement of residual stress, Youngʼs modulus, and ultimate strain of thin films, Appl. Phys. Lett. 51(4), 241–243 (1987)Google Scholar
  86. 9.86.
    P.M. Osterberg, S.D. Senturia: M-TESt: a test chip for MEMS material property measurements using electrostatically actuated test structures, J. Microelectromech. Syst. 6(2), 107–117 (1997)Google Scholar
  87. 9.87.
    W.D. Nix: Mechanical properties of thin films, Metall. Trans. 20A, 2217–2245 (1989)Google Scholar
  88. 9.88.
    K.E. Petersen: Dynamic micromechanics on silicon: Techniques and devices, IEEE Trans. Electron. Dev. 25, 1241–1250 (1978)Google Scholar
  89. 9.89.
    L.M. Zhang, D. Uttamchandani, B. Culshaw: Measurement of the mechanical properties of silicon resonators, Sens. Actuator A 29, 79–84 (1991)Google Scholar
  90. 9.90.
    B. Li, H. Xie, B. Xu, R. Geer, J. Castracane: Investigation of strain in microstructures by a novel moire method, J. Microelectromech. Syst. 11(6), 829–36 (2002)Google Scholar
  91. 9.91.
    D. Vogel, D. Lieske, A. Gollhardt, J. Keller, N. Sabate, J.R. Morante, B. Michel: FIB based measurements for material characterization on MEMS structures, Proc. SPIE 5766, 60–69 (2005)Google Scholar
  92. 9.92.
    A.A. Ayon, X. Zhang, K.T. Turner, D. Choi, B. Miller, S.F. Nagle, S.M. Spearing: Characterization of silicon wafer bonding for power MEMS applications, Sens. Actuator A 103, 1–8 (2003)Google Scholar
  93. 9.93.
    P.G. Charalambides, H.C. Cao, J. Lund, A.G. Evans: Developments of a test method for measuring the mixed mode fracture resistance of bimaterial interfaces, Mech. Mater. 8(4), 269–283 (1990)Google Scholar
  94. 9.94.
    K.T. Turner, M.D. Thouless, S.M. Spearing: Mechanics of wafer bonding: Effect of clamping, J. Appl. Phys. 95(1), 349–355 (2004)Google Scholar
  95. 9.95.
    D.S. Campbell: Mechanical properties of thin films. In: Handbook of Thin Film Technology, ed. by L.I. Maissel, R. Glang (McGraw-Hill, New York 1970)Google Scholar
  96. 9.96.
    C.H. Mastrangelo, C.H. Hsu: Mechanical stability and adhesion of microstructures under capillary forces. I. Basic theory, J. Microelectromech. Syst. 2(1), 33–43 (1993)Google Scholar
  97. 9.97.
    M.P. de Boer, T.M. Mayer: Tribology of MEMS, MRS Bull. 26(4), 302–304 (2001)Google Scholar
  98. 9.98.
    J.R. Martin, Y. Zhao: Micromachined device packaged to reduce stiction, US Patent 5694740 (1997)Google Scholar
  99. 9.99.
    R.W. Carpick, M. Salmeron: Scratching the surface: Fundamanetal investigations of tribology with atomic force microscopy, Chem. Rev. 97, 1163–1194 (1997)Google Scholar
  100. 9.100.
    B. Bhushan: Introduction to Tribology (Wiley, New York 2002)Google Scholar
  101. 9.101.
    M.P. de Boer, J.A. Knapp, T.M. Mayer, T.A. Michalske: The role of interfacial properties on MEMS performance and reliability. In: Microsystems Metrology and Inspection, Proc. EuroOpto Ser., Vol. 3825, ed. by C. Gorecki (Society of Photo-Optical, Washington 1999) pp. 2–15Google Scholar
  102. 9.102.
    M.P. de Boer, N.F. Smith, N.D. Masters, M.B. Sinclair, E.J. Pryputniewicz: Integrated platform for testing MEMS mechanical properties at the wafer scale by the IMaP methodology, ASTM Spec. Tech. Pub. 1413, 85–95 (2001)Google Scholar
  103. 9.103.
    J.G. Santiago, S.T. Wereley, C.D. Meinhart, D.J. Beebe, R.J. Adrian: A particle image velocimetry system for microfluidics, Exp. Fluids 25, 316–319 (1998)Google Scholar
  104. 9.104.
    C.D. Meinhart, S.T. Wereley, J.G. Santiago: PIV measurements of a microchannel flow, Exp. Fluids 27, 414–419 (1999)Google Scholar
  105. 9.105.
    C.D. Meinhart, H. Zhang: The flow structure inside a microfabricated inkjet printer head, J. Microelectromech. Syst. 9, 67–75 (2000)Google Scholar
  106. 9.106.
    S. Wereley, C.D. Meinhart, S. Stone, V. Hohreiter, J. Chung: Experimental microfluidics toolbox for MEMS characterization, Proc. SPIE 4558, 124–132 (2001)Google Scholar
  107. 9.107.
    E.T. Enikov: Structures and materials. In: Mechatronics Handbook, ed. by R.H. Bichop (CRC, Boca Raton 2002)Google Scholar
  108. 9.108.
    S. J. Walker, D. J. Nagel: Optics and MEMS, Tech. Rep. NRL/MR/6336-99-7975 (Naval Research Lab, Washington 1999)Google Scholar
  109. 9.109.
    L.J. Hornbeck: Frame addressed spatial light modulator, US Patent 4615595 (1986)Google Scholar
  110. 9.110.
    P.F. Van Kessel, L.J. Hornbeck, R.E. Meier, M.R. Douglass: A MEMS-based projection display, Proc. IEEE 86(8), 1687–1704 (1998)Google Scholar
  111. 9.111.
    L.J. Hornbeck: Digital light processing for high-brightness, high-resolution applications, Proc. SPIE 3013, 27–40 (1997)Google Scholar
  112. 9.112.
    S.A. Henck: Lubrication of Digital Micromirror Devices™, Tribol. Lett. 3(3), 239–247 (1997)Google Scholar
  113. 9.113.
    K. Hehr, S. Kurth, J. Mehner, W. Dotzel, T. Gessner: Investigation of heat transfer in micromirrors. In: Microsystems Metrology and Inspection, Proc. EuroOpto Ser., Vol. 3825, ed. by C. Gorecki (The Society of Photo-Optical Instrumentation Engineers, Washington 1999) pp. 24–33Google Scholar
  114. 9.114.
    R. E. Meier: DMD™ pixel mechanics simulation, TI Tech. J., 64–74 (1998) Special issue on DLP—DMD Manufacturing and Design ChallengesGoogle Scholar
  115. 9.115.
    J. Fritz, M.K. Baller, H.P. Lang, H.P. Rothuizen, P. Vettiger, E. Meyer, H.-J. Guntherodt, C. Gerber, J.K. Gimzewski: Translating biomolecular recognition into nanomechanics, Science 288(5464), 316–318 (2000)Google Scholar
  116. 9.116.
    S.C. Kuo, M.P. Sheetz: Force of single kinesin molecules measured with optical tweezers, Science 260(5105), 232–234 (1993)Google Scholar
  117. 9.117.
    E.L. Florin, V.T. Moy, H.E. Gaub: Adhesion forces between individual ligand-receptor pairs, Science 264(5157), 415–417 (1994)Google Scholar
  118. 9.118.
    G.U. Lee, L.A. Chrisey, R.J. Colton: Direct measurement of the forces between complementary strands of DNA, Science 266(5186), 771–773 (1994)Google Scholar
  119. 9.119.
    S.B. Smith, L. Finzi, C. Bustamante: Force of single kinesin molecules measured with optical tweezers, Science 258(5085), 1122–1126 (1992)Google Scholar
  120. 9.120.
    T. Thundat, G. Wu, M. Mao, A. Majumdar: Biochemo-opto-mechanical (BioCOM) chip for chemical and biomolecular detection, 1st NASA and NCI Workshop on Sensors for Bio-Molecular Signatures (1999)Google Scholar
  121. 9.121.
    M. Sepaniak, P. Datskos, N. Lavrik, C. Tipple: Microcantilever transducers: a new approach in sensor technology, Anal. Chem. 74(21), 568A–575A (2002)Google Scholar
  122. 9.122.
    M. Despont, J. Brugger, U. Drechsler, U. Dürig, W. Häberle, M.I. Lutwyche, H.E. Rothuizen, R. Stutz, R. Widmer, G.K. Binnig, H. Rohrer, P. Vettiger: VLSI-NEMS chip for AFM data storage, Technical Digest, 12th IEEE International Micro Electro Mechanical Systems Conference (MEMS ʼ99), Orlando (1999) pp. 564–569Google Scholar
  123. 9.123.
    P. Vettiger, M. Despont, U. Drechsler, U. Dürig, W. Häberle, M.I. Lutwyche, H.E. Rothuizen, R. Stutz, R. Widmer, G.K. Binnig: The “Millipede” – more than one thousand tips for future AFM data storage, IBM J. Res. Dev. 44(3), 323–340 (2000)Google Scholar
  124. 9.124.
    P. Vettiger, B. Cross, M. Despone, U. Drechsler, U. Durig, B. Botsmann, W. Haberle, M.A. Lantz, H.E. Rothuizen, R. Stutz, G.K. Binnig: The “millipede” – nanotechnology entering data storage, IEEE Trans. Nanotechnol. 1(1), 39–55 (2002)Google Scholar
  125. 9.125.
    M. Despont, U. Drechsler, R. Yu, H.B. Pogge, P. Vettiger: Wafer-scale microdevice transfer/interconnect: its application in an AFM-based data-storage system, J. Microelectromech. Syst. 13(6), 895–901 (2004)Google Scholar
  126. 9.126.
    G.K. Binnig, J. Brugger, W. Häberle, P. Vettiger: Investigation and/or manipulation device, US Patent 6249747 (2001)Google Scholar
  127. 9.127.
    P. Vettiger, G. Binnig: The nanodrive project, Sci. Am. 288(1), 47–53 (2003)Google Scholar
  128. 9.128.
    B.J. Holland, J.N. Hay: The thermal degradation of poly(vinyl alcohol), Polymer 42(16), 6775–6783 (2001)Google Scholar
  129. 9.129.
    G.A. Shaw, J.S. Trethewey, A.D. Johnson, W.J. Drugan, W.C. Crone: Thermomechanical high-density data storage in a metallic material via the shape-memory effect, Adv. Mater. 17, 1123–1127 (2005)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Engineering PhysicsUniversity of WisconsinMadisonUSA

Personalised recommendations