Skip to main content

Mechanics of Polymers: Viscoelasticity

  • Reference work entry

Part of the book series: Springer Handbooks ((SHB))

Abstract

With the heavy influx of polymers into engineering designs their special, deformation-rate-sensitive properties require particular attention. Although we often refer to them as time-dependent materials, their properties really do not depend on time, but time histories factor prominently in the responses of polymeric components or structures. Structural responses involving time-dependent materials cannot be assessed by simply substituting time-dependent modulus functions for their elastic counterparts. The outline provided here is intended to provide guidance to the experimentally inclined researcher who is not thoroughly familiar with how these materials behave, but needs to be aware of these materials because laboratory life and applications today invariably involve their use.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CSM:

continuous stiffness module

DIC:

digital image correlation

DMA:

dynamical mechanical analyzers

DTA:

differential thermal analyzer

FMT:

Fillers–Moonan–Tschoegl

LVDT:

linear variable differential transformer

LVDT:

linear variable displacement transducer

PMMA:

polymethyl methacrylate

WLF:

Williams–Landel–Ferry

References

  1. W.G. Knauss: The mechanics of polymer fracture, Appl. Mech. Rev. 26, 1–17 (1973)

    Google Scholar 

  2. C. Singer, E.J. Holmgard, A.R. Hall (Eds.): A History of Technology (Oxford University Press, New York 1954)

    Google Scholar 

  3. J.M. Kelly: Strain rate sensitivity and yield point behavior in mild steel, Int. J. Solids Struct. 3, 521–532 (1967)

    Google Scholar 

  4. H.H. Johnson, P.C. Paris: Subcritical flaw growth, Eng. Fract. Mech. 1, 3–45 (1968)

    Google Scholar 

  5. I. Finnie: Stress analysis for creep and creep-rupture. In: Appllied Mechanics Surveys, ed. by H.N. Abramson (Spartan Macmillan, New York 1966) pp. 373–383

    Google Scholar 

  6. F. Garofalo: Fundamentals of Creep and Creep Rupture in Metals (Macmillan, New York 1965)

    Google Scholar 

  7. N.J. Grant, A.W. Mullendore (Eds.): Deformation and Fracture at Elevated Temperatures (MIT Press, Cambridge 1965)

    Google Scholar 

  8. F.A. McClintock, A.S. Argon (Eds.): Mechanical Behavior of Materials (Addison-Wesley, Reading 1966)

    Google Scholar 

  9. J.B. Conway: Numerical Methods for Creep and Rupture Analyses (Gordon-Breach, New York 1967)

    Google Scholar 

  10. J.B. Conway, P.N. Flagella: Creep Rupture Data for the Refractory Metals at High Temperatures (Gordon-Breach, New York 1971)

    Google Scholar 

  11. M. Tao: High Temperature Deformation of Vitreloy Bulk Metallic Glasses and Their Composite. Ph.D. Thesis (California Institute of Technology, Pasadena 2006)

    Google Scholar 

  12. J. Lu, G. Ravichandran, W.L. Johnson: Deformation behavior of the Zr_41.2Ti_13.8Cu_12.5Ni_10Be_22.5 bulk metallic glass over a wide range of strain-rates and temperatures, Acta Mater. 51, 3429–3443 (2003)

    Google Scholar 

  13. W.G. Knauss: Viscoelasticity and the time-dependent fracture of polymers. In: Comprehensive Structural Integrity, Vol. 2, ed. by I. Milne, R.O. Ritchie, B. Karihaloo (Elsevier, Amsterdam 2003)

    Google Scholar 

  14. W. Flügge: Viscoelasticity (Springer, Berlin 1975)

    MATH  Google Scholar 

  15. H. Lu, X. Zhang, W.G. Knauss: Uniaxial, shear and Poisson relaxation and their conversion to bulk relaxation, Polym. Eng. Sci. 37, 1053–1064 (1997)

    Google Scholar 

  16. N.W. Tschoegl, W.G. Knauss, I. Emri: Poissonʼs ratio in linear viscoelasticity, a critical review, Mech. Time-Depend. Mater. 6, 3–51 (2002)

    Google Scholar 

  17. I.L. Hopkins, R.W. Hamming: On creep and relaxation, J. Appl. Phys. 28, 906–909 (1957)

    Google Scholar 

  18. R.A. Schapery: Approximate methods of transform inversion for viscoelastic stress analysis, Proc. 4th US Natl. Congr. Appl. Mech. (1962) pp. 1075–1085

    Google Scholar 

  19. J.F. Clauser, W.G. Knauss: On the numerical determination of relaxation and retardation spectra for linearly viscoelastic materials, Trans. Soc. Rheol. 12, 143–153 (1968)

    Google Scholar 

  20. G.W. Hedstrom, L. Thigpen, B.P. Bonner, P.H. Worley: Regularization and inverse problems in viscoelasticity, J. Appl. Mech. 51, 121–12 (1984)

    MATH  Google Scholar 

  21. I. Emri, N.W. Tschoegl: Generating line spectra from experimental responses. Part I: Relaxation modulus and creep compliance, Rheol. Acta. 32, 311–321 (1993)

    Google Scholar 

  22. I. Emri, N.W. Tschoegl: Generating line spectra from experimental responses. Part IV: Application to experimental data, Rheol. Acta. 33, 60–70 (1994)

    Google Scholar 

  23. I. Emri, N.W. Tschoegl: An iterative computer algorithm for generating line spectra from linear viscoelastic response functions, Int. J. Polym. Mater. 40, 55–79 (1998)

    Google Scholar 

  24. N.W. Tschoegl, I. Emri: Generating line spectra from experimental responses. Part II. Storage and loss functions, Rheol. Acta. 32, 322–327 (1993)

    Google Scholar 

  25. N.W. Tschoegl, I. Emri: Generating line spectra from experimental responses. Part III. Interconversion between relaxation and retardation behavior, Int. J. Polym. Mater. 18, 117–127 (1992)

    Google Scholar 

  26. I. Emri, N.W. Tschoegl: Generating line spectra from experimental responses. Part V. Time-dependent viscosity, Rheol. Acta. 36, 303–306 (1997)

    Google Scholar 

  27. I. Emri, B.S. von Bernstorff, R. Cvelbar, A. Nikonov: Re-examination of the approximate methods for interconversion between frequency- and time-dependent material functions, J. Non-Newton. Fluid Mech. 129, 75–84 (2005)

    MATH  Google Scholar 

  28. A. Nikonov, A.R. Davies, I. Emri: The determination of creep and relaxation functions from a single experiment, J. Rheol. 49, 1193–1211 (2005)

    Google Scholar 

  29. M.A. Branch, T.F. Coleman, Y. Li: A subspace interior, and conjugate gradient method for large-scale bound-constrained minimization problems, Siam J. Sci. Comput. 21, 1–23 (1999)

    MATH  MathSciNet  Google Scholar 

  30. F. Kohlrausch: Experimental-Untersuchungen über die elastische Nachwirkung bei der Torsion, Ausdehnung und Biegung, Pogg. Ann. Phys. 8, 337 (1876)

    Google Scholar 

  31. G. Williams, D.C. Watts: Non-symmetrical dielectric behavior arising from a simple empirical decay function, Trans. Faraday Soc. 66, 80–85 (1970)

    Google Scholar 

  32. S. Lee, W.G. Knauss: A note on the determination of relaxation and creep data from ramp tests, Mech. Time-Depend. Mater. 4, 1–7 (2000)

    Google Scholar 

  33. A. Flory, G.B. McKenna: Finite step rate corrections in stress relaxation experiments: A comparison of two methods, Mech. Time-Depend. Mater. 8, 17–37 (2004)

    Google Scholar 

  34. J.F. Tormey, S.C. Britton: Effect of cyclic loading on solid propellant grain structures, AIAA J. 1, 1763–1770 (1963)

    Google Scholar 

  35. R.A. Schapery: Thermomechanical behavior of viscoelastic media with variable properties subjected to cyclic loading, J. Appl. Mech. 32, 611–619 (1965)

    MathSciNet  Google Scholar 

  36. L.R.G. Treloar: Physics of high-molecular materials, Nature 181, 1633–1634 (1958)

    Google Scholar 

  37. M.-F. Vallat, D.J. Plazek, B. Bushan: Effects of thermal treatment of biaxially oriented poly(ethylene terephthalate), J. Polym. Sci. Polym. Phys. 24, 1303–1320 (1986)

    Google Scholar 

  38. L.E. Struik: Physical Aging in Amorphous Polymers and Other Materials (Elsevier Scientific, Amsterdam 1978)

    Google Scholar 

  39. G.B. McKenna, A.J. Kovacs: Physical aging of poly(methyl methacrylate) in the nonlinear range – torque and normal force measurements, Polym. Eng. Sci. 24, 1138–1141 (1984)

    Google Scholar 

  40. A. Lee, G.B. McKenna: Effect of crosslink density on physical aging of epoxy networks, Polymer 29, 1812–1817 (1988)

    Google Scholar 

  41. C. GʼSell, G.B. McKenna: Influence of physical aging on the yield response of model dgeba poly(propylene oxide) epoxy glasses, Polymer 33, 2103–2113 (1992)

    Google Scholar 

  42. M.L. Cerrada, G.B. McKenna: Isothermal, isochronal and isostructural results, Macromolecules 33, 3065–3076 (2000)

    Google Scholar 

  43. L.C. Brinson, T.S. Gates: Effects of physical aging on long-term creep of polymers and polymer matrix composites, Int. J. Solids Struct. 32, 827–846 (1995)

    MATH  Google Scholar 

  44. L.M. Nicholson, K.S. Whitley, T.S. Gates: The combined influence of molecular weight and temperature on the physical aging and creep compliance of a glassy thermoplastic polyimide, Mech. Time-Depend. Mat. 5, 199–227 (2001)

    Google Scholar 

  45. J.D. Ferry: Viscoelastic Properties of Polymers, 3rd edn. (Wiley, New York 1980)

    Google Scholar 

  46. J.R. Mcloughlin, A.V. Tobolsky: The viscoelastic behavior of polymethyl methacrylate, J. Colloid Sci. 7, 555–568 (1952)

    Google Scholar 

  47. H. Leaderman, R.G. Smith, R.W. Jones: Rheology of polyisobutylene. 2. Low molecular weight polymers, J. Polym. Sci. 14, 47–80 (1954)

    Google Scholar 

  48. J. Bischoff, E. Catsiff, A.V. Tobolsky: Elastoviscous properties of amorphous polymers in the transition region 1, J. Am. Chem. Soc. 74, 3378–3381 (1952)

    Google Scholar 

  49. F. Schwarzl, A.J. Staverman: Time-temperature dependence of linearly viscoelastic behavior, J. Appl. Phys. 23, 838–843 (1952)

    MATH  Google Scholar 

  50. M.L. Williams, R.F. Landel, J.D. Ferry: Mechanical properties of substances of high molecular weight. 19. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids, J. Am. Chem. Soc. 77, 3701–3707 (1955)

    Google Scholar 

  51. D.J. Plazek: Temperature dependence of the viscoelastic behavior of polystyrene, J. Phys. Chem. US 69, 3480–3487 (1965)

    Google Scholar 

  52. D.J. Plazek: The temperature dependence of the viscoelastic behavior of poly(vinyl acetate), Polym. J. 12, 43–53 (1980)

    Google Scholar 

  53. R.A. Fava (Ed.): Methods of experimental physics 16C. In: Viscoelastic and Steady-State Rheological Response, ed. by D.J. Plazek (Academic, New York 1979)

    Google Scholar 

  54. L.W. Morland, E.H. Lee: Stress analysis for linear viscoelastic materials with temperature variation, Trans. Soc. Rheol. 4, 233–263 (1960)

    MathSciNet  Google Scholar 

  55. L.J. Heymans: An Engineering Analysis of Polymer Film Adhesion to Rigid Substrates. Ph.D. Thesis (California Institute of Technology, Pasadena 1983)

    Google Scholar 

  56. G.U. Losi, W.G. Knauss: Free volume theory and nonlinear viscoelasticity, Polym. Eng. Sci. 32, 542–557 (1992)

    Google Scholar 

  57. I. Emri, T. Prodan: A Measuring system for bulk and shear characterization of polymers, Exp. Mech. 46(6), 429–439 (2006)

    Google Scholar 

  58. N.W. Tschoegl, W.G. Knauss, I. Emri: The effect of temperature and pressure on the mechanical properties of thermo- and/or piezorheologically simple polymeric materials in thermodynamic equilibrium – a critical review, Mech. Time-Depend. Mater. 6, 53–99 (2002)

    Google Scholar 

  59. R.W. Fillers, N.W. Tschoegl: The effect of pressure on the mechanical properties of polymers, Trans. Soc. Rheol. 21, 51–100 (1977)

    Google Scholar 

  60. W.K. Moonan, N.W. Tschoegl: The effect of pressure on the mechanical properties of polymers. 2. Expansively and compressibility measurements, Macromolecules 16, 55–59 (1983)

    Google Scholar 

  61. W.K. Moonan, N.W. Tschoegl: The effect of pressure on the mechanical properties of polymers. 3. Substitution of the glassy parameters for those of the occupied volume, Int. Polym. Mater. 10, 199–211 (1984)

    Google Scholar 

  62. W.K. Moonan, N.W. Tschoegl: The effect of pressure on the mechanical properties of polymers. 4. Measurements in torsion, J. Polym. Sci. Polym. Phys. 23, 623–651 (1985)

    Google Scholar 

  63. W.G. Knauss, V.H. Kenner: On the hygrothermomechanical characterization of polyvinyl acetate, J. Appl. Phys. 51, 5131–5136 (1980)

    Google Scholar 

  64. I. Emri, V. Pavšek: On the influence of moisture on the mechanical properties of polymers, Mater. Forum 16, 123–131 (1992)

    Google Scholar 

  65. D.J. Plazek: Magnetic bearing torsional creep apparatus, J. Polym. Sci. Polym. Chem. 6, 621–633 (1968)

    Google Scholar 

  66. D.J. Plazek, M.N. Vrancken, J.W. Berge: A torsion pendulum for dynamic and creep measurements of soft viscoelastic materials, Trans. Soc. Rheol. 2, 39–51 (1958)

    Google Scholar 

  67. G.C. Berry, J.O. Park, D.W. Meitz, M.H. Birnboim, D.J. Plazek: A rotational rheometer for rheological studies with prescribed strain or stress history, J. Polym. Sci. Polym. Phys. Ed. 27, 273–296 (1989)

    Google Scholar 

  68. R.S. Duran, G.B. McKenna: A torsional dilatometer for volume change measurements on deformed glasses: Instrument description and measurements on equilibrated glasses, J. Rheol. 34, 813–839 (1990)

    Google Scholar 

  69. J.E. McKinney, S. Edelman, R.S. Marvin: Apparatus for the direct determination of the dynamic bulk modulus, J. Appl. Phys. 27, 425–430 (1956)

    Google Scholar 

  70. J.E. McKinney, H.V. Belcher: Dynamic compressibility of poly(vinyl acetate) and its relation to free volume, J. Res. Nat. Bur. Stand. Phys. Chem. 67A, 43–53 (1963)

    Google Scholar 

  71. T.H. Deng, W.G. Knauss: The temperature and frequency dependence of the bulk compliance of Poly(vinyl acetate). A re-examination, Mech. Time-Depend. Mater. 1, 33–49 (1997)

    Google Scholar 

  72. S. Sane, W.G. Knauss: The time-dependent bulk response of poly (methyl methacrylate), Mech. Time-Depend. Mater. 5, 293–324 (2001)

    Google Scholar 

  73. Z. Ma, K. Ravi-Chandar: Confined compression–a stable homogeneous deformation for multiaxial constitutive characterization, Exp. Mech. 40, 38–45 (2000)

    Google Scholar 

  74. K. Ravi-Chandar, Z. Ma: Inelastic deformation in polymers under multiaxial compression, Mech. Time-Depend. Mater. 4, 333–357 (2000)

    Google Scholar 

  75. D. Qvale, K. Ravi-Chandar: Viscoelastic characterization of polymers under multiaxial compression, Mech. Time-Depend. Mater. 8, 193–214 (2004)

    Google Scholar 

  76. S.J. Park, K.M. Liechti, S. Roy: Simplified bulk experiments and hygrothermal nonlinear viscoelasticty, Mech. Time-Depend. Mater. 8, 303–344 (2004)

    Google Scholar 

  77. A. Kralj, T. Prodan, I. Emri: An apparatus for measuring the effect of pressure on the time-dependent properties of polymers, J. Rheol. 45, 929–943 (2001)

    Google Scholar 

  78. J.B. Pethica, R. Hutchings, W.C. Oliver: Hardness measurement at penetration depths as small as 20 nm, Philos. Mag. 48, 593–606 (1983)

    Google Scholar 

  79. W.C. Oliver, R. Hutchings, J.B. Pethica: Measurement of hardness at indentation depths as low as 20 nanometers. In: Microindentation Techniques in Materials Science and Engineering ASTM STP 889, ed. by P.J. Blau, B.R. Lawn (American Society for Testing and Materials, Philadelphia 1986) pp. 90–108

    Google Scholar 

  80. W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1564–1583 (1992)

    Google Scholar 

  81. I.N. Sneddon: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile, Int. J. Eng. Sci. 3, 47–57 (1965)

    MATH  MathSciNet  Google Scholar 

  82. M. Oyen-Tiesma, Y.A. Toivola, R.F. Cook: Load-displacement behavior during sharp indentation of viscous-elastic-plastic materials. In: Fundamentals of Nanoindentation and Nanotribology II, ed. by S.P. Baker, R.F. Cook, S.G. Corcoran, N.R. Moody (Mater. Res. Soc., Warrendale 2000) pp. Q1.5.1–Q1.5.6, MRS Proc. Vol. 649, MRS Fall Meeting, Boston

    Google Scholar 

  83. L. Cheng, X. Xia, W. Yu, L.E. Scriven, W.W. Gerberich: Flat-punch indentation of viscoelastic material, J. Polym. Sci. Polym. Phys. 38, 10–22 (2000)

    Google Scholar 

  84. H. Lu, B. Wang, J. Ma, G. Huang, H. Viswanathan: Measurement of creep compliance of solid polymers by nanoindentation, Mech. Time-Depend. Mater. 7, 189–207 (2003)

    Google Scholar 

  85. G. Huang, B. Wang, H. Lu: Measurements of viscoelastic functions in frequency-domain by nanoindentation, Mech. Time-Depend. Mater. 8, 345–364 (2004)

    Google Scholar 

  86. T.C.T. Ting: The contact stresses between a rigid indenter and a viscoelastic half-space, J. Appl. Mech. 33, 845–854 (1966)

    MATH  Google Scholar 

  87. E.H. Lee, J.R.M. Radok: The contact problem for viscoelastic bodies, J. Appl. Mech. 27, 438–444 (1960)

    MATH  MathSciNet  Google Scholar 

  88. E. Riande, R. Diaz-Calleja, M.G. Prolongo, R.M. Masegosa, C. Salom: Polymer Viscoelasticity-Stress and Strain in Practice (Dekker, New York 2000)

    Google Scholar 

  89. J.R.M. Radok: Visco-elastic stress analysis, Q. of Appl. Math. 15, 198–202 (1957)

    MATH  MathSciNet  Google Scholar 

  90. S.C. Hunter: The Hertz problem for a rigid spherical indenter and a viscoelastic half-space, J. Mech. Phys. Solids 8, 219–234 (1960)

    MATH  MathSciNet  Google Scholar 

  91. W.H. Yang: The contact problem for viscoelastic bodies, J. Appl. Mech. 33, 395–401 (1960)

    Google Scholar 

  92. S.A. Hutcheson, G.B. McKenna: Nanosphere embedding into polymer surfaces: A viscoelastic contact mechanics analysis, Phys. Rev. Lett. 94, 076103.1–076103.4 (2005)

    Google Scholar 

  93. J.H. Teichroeb, J.A. Forrest: Direct imaging of nanoparticle embedding to probe viscoelasticity of polymer surfaces, Phys. Rev. Lett. 91, 016104.1–106104.4 (2003)

    Google Scholar 

  94. M.L. Oyen: Spherical indentation creep following ramp loading, J. Mater. Res. 20, 2094–2100 (2005)

    Google Scholar 

  95. M.R. VanLandingham, N.K. Chang, P.L. Drzal, C.C. White, S.-H. Chang: Viscoelastic characterization of polymers using instrumented indentation–1. Quasi-static testing, J. Polym. Sci. Polym. Phys. 43, 1794–1811 (2005)

    Google Scholar 

  96. J.L. Loubet, B.N. Lucas, W.C. Oliver: Some measurements of viscoelastic properties with the help of nanoindentation, International workshop on Instrumental Indentation, ed. by D.T. Smith (NIST Special Publication, San Diego 1995) pp. 31–34

    Google Scholar 

  97. B.N. Lucas, W.C. Oliver, J.E. Swindeman: The dynamic of frequency-specific, depth-sensing indentation testing, Fundamentals of Nanoindentation and Nanotribology, Vol. 522, ed. by N.R. Moody (Mater. Res. Soc., Warrendale 1998) pp. 3–14, MRS Meeting, San Francisco 1998

    Google Scholar 

  98. R.J. Arenz, M.L. Williams (Eds.): A photoelastic technique for ground shock investigation. In: Ballistic and Space Technology (Academic, New York 1960)

    Google Scholar 

  99. Y. Miyano, T. Tamura, T. Kunio: The mechanical and optical characterization of Polyurethane with application to photoviscoelastic analysis, Bull. JSME 12, 26–31 (1969)

    Google Scholar 

  100. A.B.J. Clark, R.J. Sanford: A comparison of static and dynamic properties of photoelastic materialsm, Exp. Mech. 3, 148–151 (1963)

    Google Scholar 

  101. O.A. Hasan, M.C. Boyce: A constitutive model for the nonlinear viscoelastic-viscoplastic behavior of glassy polymers, Polym. Eng. Sci. 35, 331–334 (1995)

    Google Scholar 

  102. J.S. Bergström, M.C. Boyce: Constitutive modeling of the large strain time-dependent behavior of elastomers, J. Mech. Phys. Solids 46, 931–954 (1998)

    MATH  Google Scholar 

  103. P.D. Ewing, S. Turner, J.G. Williams: Combined tension-torsion studies on polymers: apparatus and preliminary results for Polyethylene, J. Strain Anal. Eng. 7, 9–22 (1972)

    Google Scholar 

  104. C. Bauwens-Crowet: The compression yield behavior of polymethal methacrylate over a wide range of temperatures and strain rates, J. Mater. Sci. 8, 968–979 (1973)

    Google Scholar 

  105. L.C. Caraprllucci, A.F. Yee: The biaxial deformation and yield behavior of bisphenol-A polycarbonate: Effect of anisotropy, Polym. Eng. Sci. 26, 920–930 (1986)

    Google Scholar 

  106. W.G. Knauss, I. Emri: Non-linear viscoelasticity based on free volume consideration, Comput. Struct. 13, 123–128 (1981)

    MATH  Google Scholar 

  107. W.G. Knauss, I. Emri: Volume change and the nonlinearly thermo-viscoelastic constitution of polymers, Polym. Eng. Sci. 27, 86–100 (1987)

    Google Scholar 

  108. G.U. Losi, W.G. Knauss: Free volume theory and nonlinear thermoviscoelasticity, Polym. Eng. Sci. 32, 542–557 (1992)

    Google Scholar 

  109. G.U. Losi, W.G. Knauss: Thermal stresses in nonlinearly viscoelastic solids, J. Appl. Mech. 59, S43–S49 (1992)

    Google Scholar 

  110. W.G. Knauss, S. Sundaram: Pressure-sensitive dissipation in elastomers and its implications for the detonation of plastic explosives, J. Appl. Phys. 96, 7254–7266 (2004)

    Google Scholar 

  111. R.A. Schapery: A theory of non-linear thermoviscoelasticity based on irreversible thermodynamics, Proc. 5th Natl. Cong. Appl. Mech. (1966) pp. 511–530

    Google Scholar 

  112. R.A. Schapery: On the characterization of nonlinear viscoelastic materials, Polym. Eng. Sci. 9, 295–310 (1969)

    Google Scholar 

  113. H. Lu, W.G. Knauss: The role of dilatation in the nonlinearly viscoelastic behavior of pmma under multiaxial stress states, Mech. Time-Depend. Mater. 2, 307–334 (1999)

    Google Scholar 

  114. H. Lu, G. Vendroux, W.G. Knauss: Surface deformation measurements of cylindrical specimens by digital image correlation, Exp. Mech. 37, 433–439 (1997)

    Google Scholar 

  115. W.H. Peters, W.F. Ranson: Digital imaging techniques in experimental stress analysis, Opt. Eng. 21, 427–432 (1982)

    Google Scholar 

  116. M.A. Sutton, W.J. Wolters, W.H. Peters, W.F. Ranson, S.R. McNeil: Determination of displacements using an improved digital image correlation method, Im. Vis. Comput. 1, 133–139 (1983)

    Google Scholar 

  117. H. Lu: Nonlinear Thermo-Mechanical Behavior of Polymers under Multiaxial Loading. Ph.D. Thesis (California Institute of Technology, Pasadena 1997)

    Google Scholar 

  118. D.R. Lide: CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton 1995)

    Google Scholar 

  119. G.B. McKenna: On the physics required for prediction of long term performance of polymers and their composites, J. Res. NIST 99(2), 169–189 (1994)

    Google Scholar 

  120. P.A. OʼConnell, G.B. McKenna: Large deformation response of polycarbonate: Time-temperature, time-aging time, and time-strain superposition, Polym. Eng. Sci. 37, 1485–1495 (1997)

    Google Scholar 

  121. J.L. Sullivan, E.J. Blais, D. Houston: Physical aging in the creep-behavior of thermosetting and thermoplastic composites, Compos. Sci. Technol. 47, 389–403 (1993)

    Google Scholar 

  122. I.M. Hodge: Physical aging in polymer glasses, Science 267, 1945–1947 (1995)

    Google Scholar 

  123. N. Goldenberg, M. Arcan, E. Nicolau: On the most suitable specimen shape for testing sheer strength of plastics, ASTM STP 247, 115–121 (1958)

    Google Scholar 

  124. M. Arcan, Z. Hashin, A. Voloshin: A method to produce uniform plane-stress states with applications to fiber-reinforced materials, Exp. Mech. 18, 141–146 (1978)

    Google Scholar 

  125. M. Arcan: Discussion of the iosipescu shear test as applied to composite materials, Exp. Mech. 24, 66–67 (1984)

    Google Scholar 

  126. W.G. Knauss, W. Zhu: Nonlinearly viscoelastic behavior of polycarbonate. I. Response under pure shear, Mech. Time-Depend. Mater. 6, 231–269 (2002)

    Google Scholar 

  127. W.G. Knauss, W. Zhu: Nonlinearly viscoelastic behavior of polycarbonate. II. The role of volumetric strain, Mech. Time-Depend. Mater. 6, 301–322 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wolfgang G. Knauss Prof. , Igor Emri or Hongbing Lu Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Knauss, W.G., Emri, I., Lu, H. (2008). Mechanics of Polymers: Viscoelasticity. In: Sharpe, W. (eds) Springer Handbook of Experimental Solid Mechanics. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30877-7_3

Download citation

Publish with us

Policies and ethics