Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Complex Networks, Visualization of

  • Vladimir Batagelj
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_84

Definition of the Subject

The earliest pictures containing graphs were magic figures, connections between different concepts (for example the Sephirot in Jewish Kabbalah),game boards (nine men's morris, pachisi, patolli, go, xiangqi, and others) road maps (for example Roman roads in Tabula Peutingeriana), and genealogicaltrees of important families [33].

The notion of the graph was introduced by Euler. In the eighteenth and nineteenth centuries, graphs were used mainly for solving recreationalproblems (Knight's tour, Eulerian and Hamiltonian problems, map coloring). At the end of the nineteenth century, some applications of graphs to real lifeproblems appeared (electric circuits, Kirchhoff; molecular graphs, Kekulé). In the twentieth century, graph theory evolved into its own field ofdiscrete mathematics with applications to transportation networks (road and railway systems, metro lines, bus lines), project diagrams, flowcharts ofcomputer programs, electronic circuits, molecular...

This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    Abello J, van Ham F (2004) Matrix zoom: A visual interface to semi‐external graphs. IEEE Symposium on Information Visualization, October 10–12 2004, Austin, Texas, USA, pp 183–190Google Scholar
  2. 2.
    Abello J, van Ham F, Krishnan N (2006) ASK‐GraphView: A large scale graph visualization system. IEEE Trans Vis Comput Graph 12(5):669–676Google Scholar
  3. 3.
    Ahmed A, Dwyer T, Forster M, Fu X, Ho J, Hong S, Koschützki D, Murray C, Nikolov N, Taib R, Tarassov A, Xu K (2006) GEOMI: GEOmetry for maximum insight. In: Healy P, Eades P (eds) Proc 13th Int Symp Graph Drawing (GD2005). Lecture Notes in Computer Science, vol 3843. Springer, Berlin, pp 468–479Google Scholar
  4. 4.
    Alvarez‐Hamelin JI, DallAsta L, Barrat A, Vespignani A (2005) Large scale networks fingerprinting and visualization using the k-core decomposition. In: Advances in neural information processing systems 18, Neural Information Processing Systems, NIPS 2005, December 5–8, 2005, Vancouver, British Columbia, CanadaGoogle Scholar
  5. 5.
    Batagelj V, Mrvar A (2003) Pajek – analysis and visualization of large networks. In: Jünger M, Mutzel P (eds) Graph drawing software. Springer, Berlin, pp 77–103Google Scholar
  6. 6.
    Batagelj V, Zaveršnik M (2002) Generalized cores. arxiv cs.DS/0202039Google Scholar
  7. 7.
    Batagelj V, Mrvar A, Zaveršnik M (1999) Partitioning approach to visualization of large graphs. In: Kratochvíl J (ed)Lecture notes in computer science, vol 1731. Springer, Berlin, pp 90–97Google Scholar
  8. 8.
    Becker RA, Eick SG, Wilks AR (1995) Visualizing network data. IEEE Trans Vis Comput Graph 1(1):16–28Google Scholar
  9. 9.
    Boyack KW, Klavans R, Börner K (2005) Mapping the backbone of science. Scientometrics 64(3):351–374Google Scholar
  10. 10.
    Boyack KW, Klavans R, Paley WB (2006) Map of science. Nature 444:985Google Scholar
  11. 11.
    Brandes U, Pich C (2007) Eigensolver methods for progressive multidimensional scaling of large data. In: Proc 14th Intl Symp Graph Drawing (GD ’06). Lecture notes in computer science, vol 4372. Springer, Berlin, pp 42–53Google Scholar
  12. 12.
    Brandes U, Fleischer D, Lerner J (2006) Summarizing dynamic bipolar conflict structures. IEEE Trans Vis Comput Graph (special issue on Visual Analytics) 12(6):1486–1499Google Scholar
  13. 13.
    Dickerson M, Eppstein D, Goodrich MT, Meng J (2005) Confluent drawings: Visualizing non‐planar diagrams in a planar way. J Graph Algorithms Appl (special issue for GD’03) 9(1):31–52MathSciNetGoogle Scholar
  14. 14.
    DodgeM, Kitchin R (2001) The atlas of cyberspace. Pearson Education,Addison Wesley, New YorkGoogle Scholar
  15. 15.
    Doreian P, Batagelj V, Ferligoj A (2005) Generalized blockmodeling. Cambridge University Press, CambridgeGoogle Scholar
  16. 16.
    Dwyer T, Koren Y (2005) DIG-COLA: Directed graph layout through constrained energy minimization. INFOVIS 2005:9Google Scholar
  17. 17.
    Eades P (1984) A heuristic for graph drawing. Congressus Numerantium 42:149–160MathSciNetGoogle Scholar
  18. 18.
    Fairchild KM, Poltrock SE, Furnas GW (1988) SemNet: Three‐dimensional representations of large knowledge bases. In: Guindon R (ed) Cognitive science and its applications for human‐computer interaction. Lawrence Erlbaum, Hillsdale, pp 201–233Google Scholar
  19. 19.
    FreemanLC (2000) Visualizing social networks. J Soc Struct 1(1). http://wwww.cmu.edu/joss/content/articles/volume1/Freeman/
  20. 20.
    Freeman LC (2004) The development of social network analysis: A study in the sociology of science. Empirical, VancouverGoogle Scholar
  21. 21.
    Fruchterman T, Reingold E (1991) Graph drawing by force directed placement. Softw Pract Exp 21(11):1129–1164Google Scholar
  22. 22.
    Gajer P, Kobourov S (2001) GRIP: Graph drawing with intelligent placement. Graph Drawing 2000 LNCS, vol 1984:222–228Google Scholar
  23. 23.
    Gansner ER, Koren Y, North SC (2005) Topological fisheye views for visualizing large graphs. IEEE Trans Vis Comput Graph 11(4):457–468Google Scholar
  24. 24.
    Graph Drawing. Lecture Notes in Computer Science, vol 894 (1994), 1027 (1995), 1190 (1996), 1353 (1997), 1547 (1998), 1731 (1999), 1984 (2000), 2265 (2001), 2528 (2002), 2912 (2003), 3383 (2004), 3843 (2005), 4372 (2006), 4875 (2007). Springer, BerlinGoogle Scholar
  25. 25.
    Hachul S, Jünger M (2007) Large-graph layout algorithms at work: An experimental study. JGAA 11(2):345–369Google Scholar
  26. 26.
    Harel D, Koren Y (2004) Graph drawing by high‐dimensional embedding. J Graph Algorithms Appl 8(2):195–214MathSciNetGoogle Scholar
  27. 27.
    Henry N, Fekete J-D (2006) MatrixExplorer: A dual‐representation system to explore social networks. IEEE Trans Vis Comput Graph 12(5):677–684Google Scholar
  28. 28.
    Herman I, Melancon G, Marshall MS (2000) Graph visualization and navigation in information visualization: A survey. IEEE Trans Vis Comput Graph 6(1):24–43Google Scholar
  29. 29.
    Hu YF (2005) Efficient and high quality force‐directed graph drawing. Math J 10:37–71Google Scholar
  30. 30.
    Kamada T, Kawai S (1988) An algorithm for drawing general undirected graphs. Inf Proc Lett 31:7–15MathSciNetGoogle Scholar
  31. 31.
    Knuth DE (1963) Computer‐drawn flowcharts. Commun ACM 6(9):555–563Google Scholar
  32. 32.
    Koren Y (2003) On spectral graph drawing. COCOON 2003:496–508Google Scholar
  33. 33.
    Kruja E, Marks J, Blair A, Waters R (2001) A short note on the history of graph drawing. In: Proc Graph Drawing 2001. Lecture notesin computer science, vol 2265. Springer, Berlin, pp 272–286Google Scholar
  34. 34.
    Lamping J, Rao R, Pirolli P (1995) A focus+context technique based on hyperbolic geometry for visualizing large hierarchies. CHI 95:401–408Google Scholar
  35. 35.
    Moody J (2001) Race, school integration, and friendship segregation in America. Am J Soc 107(3):679–716MathSciNetGoogle Scholar
  36. 36.
    Moreno JL (1953) Who shall survive? Beacon, New YorkGoogle Scholar
  37. 37.
    Mueller C, Martin B, Lumsdaine A (2007) A comparison of vertex ordering algorithms for large graph visualization. APVIS 2007, pp 141–148Google Scholar
  38. 38.
    Munzner T (1997) H3: Laying out large directed graphs in 3D hyperbolic space. In: Proceedings of the 1997 IEEE Symposium on Information Visualization, 20–21 October 1997, Phoenix, AZ, pp 2–10Google Scholar
  39. 39.
    Noack A (2007) Energy models for graph clustering. J Graph Algorithms Appl 11(2):453–480MathSciNetGoogle Scholar
  40. 40.
    Shneiderman B (1996) The eyes have it: A task by data type taxonomy for information visualization. In: IEEE Conference on Visual Languages (VL’96). IEEE CS Press, BoulderGoogle Scholar
  41. 41.
    Shneiderman B, Aris A (2006) Network visualization by semantic substrates. IEEE Trans Vis Comput Graph 12(5):733–740Google Scholar
  42. 42.
    Sugiyama K, Tagawa S, Toda M (1981) Methods for visual understanding of hierarchical systems. IEEE Trans Syst, Man, Cybern 11(2):109–125MathSciNetGoogle Scholar
  43. 43.
    Tutte WT (1963) How to draw a graph. Proc London Math Soc s3-13(1):743–767MathSciNetGoogle Scholar
  44. 44.
    Walshaw C (2003) A multilevel algorithm for force‐directed graph‐drawing. J Graph Algorithms Appl 7(3):253–285MathSciNetGoogle Scholar
  45. 45.
    Wetherell C, Shannon A (1979) Tidy drawing of trees. IEEE Trans Softw Engin 5:514–520Google Scholar
  46. 46.
    White DR, Jorion P (1992) Representing and computing kinship: A new approach. Curr Anthr 33(4):454–463Google Scholar
  47. 47.
    Wills GJ (1999) NicheWorks‐interactive visualization of very large graphs. J Comput Graph Stat 8(2):190–212MathSciNetGoogle Scholar

Web Resources

  1. 48.
    3D Macromolecule analysis and Kinemage home page: http://kinemage.biochem.duke.edu/. Accessed March 2008
  2. 49.
    Aguidel: http://www.aguidel.com/en/. Accessed March 2008
  3. 50.
    Batagelj V, Mrvar A (1996) Pajek – program for analysis and visualization of large network: http://pajek.imfm.si. Accessed March 2008. Data sets: http://vlado.fmf.uni-lj.si/pub/networks/data/. Accessed March 2008
  4. 51.
    Brookhaven Protein Data Bank: http://www.rcsb.org/pdb/. Accessed March 2008
  5. 52.
    Caida: http://www.caida.org/home/. Accessed March 2008. Walrus gallery: http://www.caida.org/tools/visualization/walrus/gallery1/. Accessed March 2008
  6. 53.
    Cheswick B: Internet mapping project – map gallery: http://www.cheswick.com/ches/map/gallery/. Accessed March 2008
  7. 54.
    Complex Networks Collaboratory: http://cxnets.googlepages.com/. Accessed March 2008
  8. 55.
    Cruz I, Tamassia R (1994) Tutorial on graph drawing. http://graphdrawing.org/literature/gd-constraints.pdf. Accessed March 2008
  9. 56.
    Davis T: University of Florida Sparse Matrix Collection: http://www.cise.ufl.edu/research/sparse/matrices. Accessed March 2008
  10. 57.
    Di Battista G, Eades P, Tamassia R, Tollis IG (1994) Algorithms for drawing graphs: An annotated bibliography. Comput Geom: Theory Appl 4:235–282. http://graphdrawing.org/literature/gdbiblio.pdf. Accessed March 2008
  11. 58.
    Dodge M: Cyber‐Geography Research: http://personalpages.manchester.ac.uk/staff/m.dodge/cybergeography/. Accessed March 2008
  12. 59.
    Edinburgh Associative Thesaurus (EAT): http://www.eat.rl.ac.uk/. Accessed March 2008
  13. 60.
    FamilySearch: http://www.familysearch.org/. Accessed March 2008
  14. 61.
    FASresearch, Vienna, Austria: http://www.fas.at/. Accessed March 2008
  15. 62.
    Follow the Oil Money: http://oilmoney.priceofoil.org/. Accessed March 2008
  16. 63.
    GDToolkit – Graph Drawing Toolkit: http://www.dia.uniroma3.it/%7Egdt/gdt4/index.php. Accessed March 2008
  17. 64.
    GEOMI (Geometry for Maximum Insight): http://www.cs.usyd.edu.au/%7Evisual/valacon/geomi/. Accessed March 2008
  18. 65.
    Google Maps: http://maps.google.com/. Accessed March 2008
  19. 66.
    Graphael: http://graphael.cs.arizona.edu/. Accessed March 2008
  20. 67.
    Graphdrawing home page: http://graphdrawing.org/. Accessed March 2008
  21. 68.
    GraphML File Format: http://graphml.graphdrawing.org/. Accessed March 2008
  22. 69.
    Graphviz: http://graphviz.org/. Accessed March 2008
  23. 70.
  24. 71.
    Grokker – Enterprise Search Management and Content Integration: http://www.grokker.com/. Accessed March 2008
  25. 72.
    Henry N, Fekete J-D, Mcguffin M (2007) NodeTrix: Hybrid representation for analyzing social networks: https://hal.inria.fr/inria-00144496. Accessed March 2008
  26. 73.
    Herr BW, Holloway T, Börner K (2007) Emergent mosaic of wikipedian activity: http://www.scimaps.org/dev/big_thumb.php?map_id=158. Accessed March 2008
  27. 74.
    Hu YF: Gallery of Large Graphs: http://www.research.att.com/%7Eyifanhu/GALLERY/GRAPHS/index1.html. Accessed March 2008
  28. 75.
    iCKN: TeCFlow – a temporal communication flow visualizer for social network analysis: http://www.ickn.org/. Accessed March 2008
  29. 76.
    ILOG Diagrams: http://www.ilog.com/. Accessed March 2008
  30. 77.
    Infovis – 1100+ examples of information visualization: http://www.infovis.info/index.php?cmd=search&words=graph&mode=normal. Accessed March 2008Google Scholar
  31. 78.
    INSNA – International Network for Social Network Analysis: http://www.insna.org/. Accessed March 2008
  32. 79.
    Journal of Graph Algorithms and Applications: http://jgaa.info/. Accessed March 2008
  33. 80.
    KartOO visual meta search engine: http://www.kartoo.com/. Accessed March 2008
  34. 81.
    LaNet-vi – Large Network visualization tool: http://xavier.informatics.indiana.edu/lanet-vi/. Accessed March 2008
  35. 82.
    MDL Chime: http://www.mdli.com/. Accessed March 2008
  36. 83.
    Moody J (2007) The network structure of sociological production II: http://www.soc.duke.edu/%7Ejmoody77/presentations/soc_Struc_II.ppt. Accessed March 2008
  37. 84.
    Mueller C: Matrix visualizations: http://www.osl.iu.edu/%7Echemuell/data/ordering/sparse.html. Accessed March 2008
  38. 85.
    OLIVE, On-line library of information visualization environments: http://otal.umd.edu/Olive/. Accessed March 2008
  39. 86.
    Pad++: Zoomable user interfaces: Portal filtering and ‘magic lenses’: http://www.cs.umd.edu/projects/hcil/pad++/tour/lenses.html. Accessed March 2008
  40. 87.
    RasMol Home Page: http://www.umass.edu/microbio/rasmol/index2.htm. Accessed March 2008
  41. 88.
    Sonia – Social Network Image Animator: http://www.stanford.edu/group/sonia/. Accessed March 2008
  42. 89.
  43. 90.
  44. 91.
    Tom Sawyer Software: http://www.tomsawyer.com/home/index.php. Accessed March 2008
  45. 92.
    TouchGraph: http://www.touchgraph.com/. Accessed March 2008
  46. 93.
  47. 94.
    Viégas FB, Wattenberg M (2007) Many Eyes: http://services.alphaworks.ibm.com/manyeyes/page/Network_Diagram.html. Accessed March 2008
  48. 95.
    Visual complexity: http://www.visualcomplexity.com/vc/. Accessed March 2008
  49. 96.
    yWorks/yFiles: http://www.yworks.com/en/products_yfiles_about.htm. Accessed March 2008

Books and Reviews

  1. 97.
    Bertin J (1967) Sémiologie graphique. Les diagrammes, les réseaux, les cartes. Mouton/Gauthier‐Villars, Paris/La HayeGoogle Scholar
  2. 98.
    Brandes U, Erlebach T (eds) (2005) Network analysis: Methodological foundations. LNCS. Springer, BerlinGoogle Scholar
  3. 99.
    Carrington PJ, Scott J, Wasserman S (eds) (2005) Models and methods in social network analysis. Cambridge University Press, CambridgeGoogle Scholar
  4. 100.
    de Nooy W, Mrvar A, Batagelj V (2005) Exploratory social network analysis with Pajek. Cambridge University Press, CambridgeGoogle Scholar
  5. 101.
    di Battista G, Eades P, Tamassia R, Tollis IG (1999) Graph drawing: Algorithms for the visualization of graphs. Prentice Hall,Englewood CliffsGoogle Scholar
  6. 102.
    Jünger M, Mutzel P (eds) (2003) Graph drawing software. Springer, BerlinGoogle Scholar
  7. 103.
    Kaufmann M, Wagner D (2001) Drawing graphs, methods and models. Springer, BerlinGoogle Scholar
  8. 104.
    Tufte ER (1983) The visual display of quantitative information. Graphics, CheshireGoogle Scholar
  9. 105.
    Wasserman S, Faust K (1994) Social network analysis: Methods and applications. Cambridge University Press, CambridgeGoogle Scholar
  10. 106.
    Wilkinson L (2000) The grammar of graphics. Statistics and Computing. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Vladimir Batagelj
    • 1
  1. 1.University of LjubljanaLjubljanaSlovenia