Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and Urban Morphologies

  • Michael Batty
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_69

Definition of the Subject

Cities have been treated as systems for fifty years but only in the last two decades has the focus changed from aggregateequilibrium systems to more evolving systems whose structure emerges from the bottom up. We firstoutline the rudiments of the traditional approach focusing on equilibrium and then discuss how the paradigm has changed to one which treats cities asemergent phenomena generated through a combination of hierarchical levels of decision, driven in decentralized fashion. This is consistent with thecomplexity sciences which dominate the simulation of urban form and function. We begin however with a review of equilibrium models, particularlythose based on spatial interaction, and we then explore how simple dynamic frameworks can be fashioned to generate more realistic models. In exploringdynamics , nonlinear systems which admit chaos and bifurcation have relevance but recently more pragmaticschemes of structuring urban models based on cellular...

This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    Acevedo W, Gaydos L, Tilley J, Mladinich C, Buchanan J, Blauer S, Kruger K, Schubert J (1997) Urban land use change in the Las Vegas valley. US Geological Survey, WashingtonGoogle Scholar
  2. 2.
    Albert R, Jeong H, Barabási A-L (1999) Diameter of the world wide web. Nature 401:130–131Google Scholar
  3. 3.
    Allen PM (1982) Evolution, modelling, and design in a complex world. Environ Plan B 9:95–111Google Scholar
  4. 4.
    Allen PM (1998) Cities and regions as self‐organizing systems: models of complexity. Taylor and Francis, LondonGoogle Scholar
  5. 5.
    Alonso W (1964) Location and land use. Harvard University Press, CambridgeGoogle Scholar
  6. 6.
    Anas A (1983) Discrete choice theory, information theory and the multinomial logit and gravity models. Transp Res B 17B:13–23MathSciNetGoogle Scholar
  7. 7.
    Andersson C, Rasmussen S, White R (2002) Urban settlements transition. Environ Plan B 29:841–865Google Scholar
  8. 8.
    Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512Google Scholar
  9. 9.
    Barredo JI, Kasanko M, McCormick N, Lavalle C (2003) Modeling dynamic spatial processes: simulation of urban future scenarios through cellular automata. Landscape Urban Plan 64:145–160Google Scholar
  10. 10.
    Batty M (1974) Spatial entropy. Geograph Anal 6:1–31Google Scholar
  11. 11.
    Batty M (1976) Urban modelling: algorithms, calibration, predictions. Cambridge University Press, CambridgeGoogle Scholar
  12. 12.
    Batty M (2005) Agents, cells, and cities: new representational models for simulating multiscale urban dynamics. Environ Plan A 37(8):1373–1394Google Scholar
  13. 13.
    Batty M (2005) Cities and complexity: understanding cities with cellular automata, agent‐based models, and fractals. MIT Press, CambridgeGoogle Scholar
  14. 14.
    Batty M (2006) Rank clocks. Nature 444:592–596ADSGoogle Scholar
  15. 15.
    Batty M (2008) The size, scale, and shape of cities. Science 319(5864):769–771ADSGoogle Scholar
  16. 16.
    Batty M, Longley PA (1994) Fractal cities: a geometry of form and function. Academic Press, San DiegoGoogle Scholar
  17. 17.
    Batty M, Torrens PM (2005) Modelling and prediction in a complex world. Futures 37(7):745–766Google Scholar
  18. 18.
    Batty M, Xie Y (1994) From cells to cities. Environ Plan B 21:s31–s48Google Scholar
  19. 19.
    Batty M, Xie Y, Sun Z (1999) Modeling urban dynamics through GIS‐based cellular automata. Comput Environ Urban Syst 23:205–233Google Scholar
  20. 20.
    Ben Akiva M, Lerman S (1985) Discrete choice analysis. MIT Press, CambridgeGoogle Scholar
  21. 21.
    Berry BJL (1964) Cities as systems within systems of cities. Papers Proc Region Sci Assoc 13:147–164ADSGoogle Scholar
  22. 22.
    Besussi E, Cecchini A, Rinaldi E (1998) The diffused city of the italian north‐east: identification of urban dynamics using cellular automata urban models. Comp Environ Urban Syst 22:497–523Google Scholar
  23. 23.
    Blank A, Solomon S (2000) Power laws in cities population, financial markets and internet sites: scaling and systems with a variable number of components. Physica A 287:279–288MathSciNetADSGoogle Scholar
  24. 24.
    Cardillo A, Scellato S, Latora V, Porta S (2006) Structural properties of planar graphs of urban street patterns. Phys Rev E 73:066107-1–8ADSGoogle Scholar
  25. 25.
    Castle CJE, Crooks AT (2006) Principles and concepts of agent‐based modelling for developing geospatial simulations. Working Paper 110. Centre for Advanced Spatial Analysis, University College London, LondonGoogle Scholar
  26. 26.
    Chadwick GF (1971) A systems view of planning. Pergamon Press, OxfordGoogle Scholar
  27. 27.
    Chapin FS, Weiss SF (1968) A probabilistic model for residential growth. Transp Res 2:375–390Google Scholar
  28. 28.
    Cheng J (2003) Modelling spatial and temporal urban growth. Ph D Thesis, ITC Dissertation 99, ITC, Enschede, NetherlandsGoogle Scholar
  29. 29.
    Clark C (1951) Urban population densities. J Royal Stat Soc Ser A 114:490–496Google Scholar
  30. 30.
    Clarke G (ed) (1996) Microsimulation for urban and regional policy analysis. Pion Press, LondonGoogle Scholar
  31. 31.
    Clarke KC, Gaydos LJ (1998) Loose coupling a cellular automaton model and GIS: long‐term growth prediction for San Francisco and Washington/Baltimore. Int J Geograph Inform Sci 12:699–714Google Scholar
  32. 32.
    Couclelis H (1985) Cellular worlds: a framework for modeling micro‐macro dynamics. Environ Plan A 17:585–596Google Scholar
  33. 33.
    Crucitti P, Latora V, Porta S (2006) Centrality measures in spatial networks of urban streets. Phys Rev E 73:036125-1-5ADSGoogle Scholar
  34. 34.
    Curry L (1964) The random spatial economy: an exploration in settlement theory. Ann Assoc Amer Geograph 54:138–146Google Scholar
  35. 35.
    de Almeida CM, Batty M, Câmara G, Cerqueira GC, Monteiro AMV, Pennachin CP, Soares-Filho BS (2003) Stochastic cellular automata modeling of urban land use dynamics: empirical development and estimation. Comput Environ Urban Syst 27:481–509Google Scholar
  36. 36.
    Dendrinos DS, Mullally H (1985) Urban evolution: studies in the mathematical ecology of cities. Oxford University Press, OxfordGoogle Scholar
  37. 37.
    Epstein JM, Axtell RL (1996) Growing artificial societies: social science from the bottom up. MIT Press, CambridgeGoogle Scholar
  38. 38.
    Feigenbaum MJ (1980) The metric universal properties of period doubling bifurcations and the spectrum for a route to turbulence. Ann New York Acad Sci 357:330–336ADSGoogle Scholar
  39. 39.
    Forrester JW (1969) Urban dynamics. MIT Press, CambridgeGoogle Scholar
  40. 40.
    Fujita M, Krugman P, Venables AJ (1999) The spatial economy: cities, regions, and international trade. MIT Press, CambridgeGoogle Scholar
  41. 41.
    Gabaix X (1999) Zipf’s law for cities: an explanation. Quart J Econom 114:739–767Google Scholar
  42. 42.
    Gell-Man M (1994) The quark and the jaguar: adventures in the simple and the complex. Freeman and Company, New YorkGoogle Scholar
  43. 43.
    Gibrat R (1931) Les inégalités économiques. Librarie du Recueil Sirey, ParisGoogle Scholar
  44. 44.
    Gilbert N (2007) Agent‐based models. Sage Inc., Thousand OaksGoogle Scholar
  45. 45.
    Haag G (1989) Dynamic decision theory: applications to urban and regional topics. Kluwer, DordrechtGoogle Scholar
  46. 46.
    Helbing D, Nagel K (2004) The physics of traffic and regional development. Contemp Phys 45:405–426ADSGoogle Scholar
  47. 47.
    Hillier B (1996) Space is the machine. Cambridge University Press, CambridgeGoogle Scholar
  48. 48.
    Jiang B (2007) A topological pattern of urban street networks: universality and peculiarity. Physica A 384:647–655ADSGoogle Scholar
  49. 49.
    Lathrop GT, Hamburg JR (1965) An opportunity‐accessibility model for allocating regional growth. J Amer Inst Plan 31:95–103Google Scholar
  50. 50.
    Lowry IS (1964) Model of metropolis. Memorandum RM-4035-RC. Rand Corporation, Santa MonicaGoogle Scholar
  51. 51.
    Mandelbot BB (1983) The fractal geometry of nature. Freeman, New YorkGoogle Scholar
  52. 52.
    May RM (1976) Simple mathematical models with very complicated dynamics. Nature 261:459–467ADSGoogle Scholar
  53. 53.
    McLoughlin JB (1969) Urban and regional planning: a systems approach. Faber and Faber, LondonGoogle Scholar
  54. 54.
    Miller JH, Page SE (2007) Complex adaptive systems: an introduction to computational models of social life. Princeton University Press, PrincetonGoogle Scholar
  55. 55.
    Nagel K, Beckman RJ, Barrett CL (1999) TRANSIMS for urban planning. LA-UR 984389. Los Alamos National Laboratory, Los AlamosGoogle Scholar
  56. 56.
    Newman M, Barabási A-L, Watts DJ (2006) The structure and dynamics of networks. Princeton University Press, PrincetonGoogle Scholar
  57. 57.
    Nijkamp P, Reggiani A (1992) Interaction, evolution and chaos in space. Springer, BerlinGoogle Scholar
  58. 58.
    Papini L, Rabino GA, Colonna A, Di Stefano V, Lombardo S (1998) Learning cellular automata in a real world: the case study of the rome metropolitan area. In: Bandini S, Serra R, Suggi Liverani F (eds) Cellular automata: research towards industry: ACRI’96. Proc of the 3rd Conference on cellular automata for research and industry. Springer, London, pp 165–183Google Scholar
  59. 59.
    Portugali J, Benenson I (1996) Human agents between local and global forces in a self‐organizing city. In: Schweitzer F (ed) Self‐organization of complex structures: from individual to collective dynamics. Gordon and Breach, London, pp 537–545Google Scholar
  60. 60.
    Propolis (2004) PROPOLIS (policies and research of policies for land use and transport for increasing urban sustainability). Final report for the Commission of the European Communities. LT Consultants Ltd, HelsinkiGoogle Scholar
  61. 61.
    Schelling TC (1969) Models of segregation. Amer Econom Rev Papers Proc 58(2):488–493Google Scholar
  62. 62.
    Schelling TC (1978) Micromotives and macrobehavior. Norton and Company, New YorkGoogle Scholar
  63. 63.
    Schweitzer F, Steinbrink J (1997) urban cluster growth: analysis and computer simulation of urban aggregations. In: Schweitzer F (ed) Self‐organization of complex structures: from individual to collective dynamics. Gordon and Breach, London, pp 501–518Google Scholar
  64. 64.
    Semboloni F (2000) The growth of an urban cluster into a dynamic self‐modifying spatial pattern. Environ Plan B 27:549–564Google Scholar
  65. 65.
    Tobler WR (1970) A computer movie simulating population growth in the detroit region. Econom Geograph 42:234–240Google Scholar
  66. 66.
    Tribus M (1969) Rational, descriptions, decisions and designs. Pergamon Press, New YorkGoogle Scholar
  67. 67.
    von Bertalanffy L (1969) General system theory: foundations, development, applications. George Braziller, New York. Revised Edition (1976)Google Scholar
  68. 68.
    von Thünen JH (1826) Von Thunen’s isolated state. Pergamon, Oxford. (1966 translation from the 1826 German Edition Der isolierte Staat in Beziehung auf Landwirtschaft und Nationaloekonomie by P. G. Hall)Google Scholar
  69. 69.
    Waddell P (2002) UrbanSim: modeling urban development for land use, transportation and environmental planning. J Amer Plan Assoc 68:297–314Google Scholar
  70. 70.
    Ward DP, Murray AT, Phinn SR (2000) A stochastically constrained cellular model of urban growth. Comput Environ Urban Syst 24:539–558Google Scholar
  71. 71.
    Wegener M (2005) Urban land‐use transportation models. In: Maguire DJ, Batty M, Goodchild MF (eds) GIS, spatial analysis, and modeling. ESRI Press, Redlands, pp 203–220Google Scholar
  72. 72.
    White RW, Engelen G (1993) Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land use patterns. Environ Plan A 25:1175–1193Google Scholar
  73. 73.
    Wiener N (1965) Cybernetics: or the control and communication in the animal and the machine, 2nd edn. MIT Press, CambridgeGoogle Scholar
  74. 74.
    Wilson AG (1970) Entropy in urban and regional modelling. Pion Press, LondonGoogle Scholar
  75. 75.
    Wilson AG (1981) Catastrophe theory and bifurcation; applications to urban and regional systems. University of California Press, BerkeleyGoogle Scholar
  76. 76.
    Wilson AG (2007) Boltzmann, Lotka, and Volterra and spatial structural evolution: a integrated methodology for some dynamical systems. J Royal Soc Interface 1–7. doi:10.1098/rsif.2007.1288
  77. 77.
    Wu F, Webster CJ (1998) Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environ Plan B 25:103–126Google Scholar
  78. 78.
    Xie Y (1994) Analytical models and algorithms for cellular urban dynamics. Unpublished Ph D dissertation, State University of New York at Buffalo, BuffaloGoogle Scholar
  79. 79.
    Xie Y, Batty M (2005) Integrated urban evolutionary modeling. In: Atkinson PM, Foody GM, Darby SE, Wu F (eds) Geodynamics. CRC Press, Boca Raton, pp 273–293Google Scholar
  80. 80.
    Yeh A G-O, Li X (2000) A ‘Grey‐Cell’ constrained ca model for the simulation of urban forms and developments in the planning of sustainable cities using GIS. Centre of Urban Planning and Environmental Management. University of Hong Kong, PokfulamGoogle Scholar
  81. 81.
    Zipf GK (1949) Human behavior and the principle of least effort. Addison-Wesley, CambridgeGoogle Scholar

Books and Reviews

  1. 82.
    Barabási A (2002) Linked: the new science of networks. Perseus Publishing, New YorkGoogle Scholar
  2. 83.
    Batty M, Couclelis H, Eichen M (1997) Urban systems as cellular automata. Environ Plan B 24:159–164Google Scholar
  3. 84.
    Benenson I, Torrens PM (2004) Geosimulation: automata‐based modeling of urban phenomena. Wiley, LondonGoogle Scholar
  4. 85.
    Clarke M, Wilson AG (1993) Dynamics of urban spatial structure: progress and problems. J Region Sci 21:1–18Google Scholar
  5. 86.
    Couclelis H (1997) From cellular automata models to urban models: new principles for model development and implementation. Environ Plan B 24:165–174Google Scholar
  6. 87.
    Dendrinos DS, Sonis M (1990) Chaos and socio‐spatial dynamics. Springer, New YorkGoogle Scholar
  7. 88.
    Haggett P, Chorley R (1969) Network analysis in geography. Edward Arnold, LondonGoogle Scholar
  8. 89.
    Helbing D, Molnar P Farkas IJ, Bolay K (2001) Self‐organizing pedestrian movement. Environ Plan B 28:361–383Google Scholar
  9. 90.
    Holland JH (1995) Hidden order: how adaptation builds complexity. Addison-Wesley, ReadingGoogle Scholar
  10. 91.
    Isard W (1956) Location and space‐economy: a general theory relating to industrial location, market areas, land use, trade and urban structure. MIT Press, CambridgeGoogle Scholar
  11. 92.
    Jacobs J (1961) The death and life of great american cities. Vintage Books, Random HouseGoogle Scholar
  12. 93.
    Krugman PR (1996) The self‐organizing economy. Blackwell, CambridgeGoogle Scholar
  13. 94.
    Portugali J (2000) Self‐organization and the city. Springer, BerlinGoogle Scholar
  14. 95.
    Resnick M (1994) Termites, turtles and traffic jams: explorations in massively parallel micro‐worlds. MIT Press, CambridgeGoogle Scholar
  15. 96.
    Sanders L, Pumain D, Mathian H, Guerin-Pace F, Bura S (1997) SIMPOP: a multiagent system for the study of urbanism. Environ Plan B 24:287–305Google Scholar
  16. 97.
    Simon HA (1969, 1996) Sciences of the artificial. MIT Press, CambridgeGoogle Scholar
  17. 98.
    Stewart JQ, Warntz W (1958) Physics of population distribution. J Region Sci 1:99–123Google Scholar
  18. 99.
    White RW (1998) Cities and cellular automata. Discrete Dyn Nature Soc 2:111–125Google Scholar
  19. 100.
    Willumsen LG, de Ortuzar JD (1990) Modelling transport. Wiley, ChichesterGoogle Scholar
  20. 101.
    Wilson AG (2000) Complex spatial systems: the modelling foundations of urban and regional analysis. Pearson Education, HarlowGoogle Scholar
  21. 102.
    Wilson AG (1974) Urban and regional models in geography and planning. Wiley, ChichesterGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Michael Batty
    • 1
  1. 1.Center for Advanced Spatial AnalysisUniversity College LondonLondonUK