Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Social Network Analysis, Large-Scale

  • Vladimir Batagelj
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_489

Definition of the Subject

network is based on two sets: a set of vertices (nodes), that represent the selected units, and a set of lines (links), thatrepresent ties between units. Each line has two vertices as its end‐points; ifthey are equal it is called a  loop . Vertices and lines forma  graph . A line can be directed – an arc , or undirected – an edge .

Additional data about vertices or lines are usually known – their properties (attributes). Forexample: name/label, type, value, position, … In general
$$ \text{Network $=$ Graph $+$ Data}\:. $$
This is a preview of subscription content, log in to check access.

Bibliography

Primary Literature

  1. 1.
    Abello J, Pardalos PM, Resende MG (2002) Handbook of Massive Data Sets. Springer, Heidelberg Google Scholar
  2. 2.
    Adamic LA, Lukose RM, Huberman BA (2002) Local Search in Unstructured Networks. In: Bornholdt S, Schuster HG (eds) Handbook of Graphs and Networks: From the Genome to the Internet. Wiley-VCH, BerlinGoogle Scholar
  3. 3.
    Ahmed A, Batagelj V, Fu X, Hong SH, Merrick D, Mrvar A (2007) Visualisation and Analysis of the Internet Movie Database. Proceedings of the Asia-Pacific Symposium on Visualisation (APVIS2007), Sydney, Australia, 5–7 Feb. IEEE, New York, pp 17–24Google Scholar
  4. 4.
    Albert R, Barabási AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97Google Scholar
  5. 5.
    Alvarez-Hamelin JI, Dall'Asta L, Barrat A, Vespignani A (2005) k‑core decomposition: a tool for the visualization of large scale networks. cs.NI/0504107 published in Advances in Neural Information Processing Systems 18, Canada, 2006Google Scholar
  6. 6.
    Batagelj V (1989) Similarity measures between structured objects. In: Graovac A (ed) Proceedings of International Course and Conference on the Interfaces between Mathematics, Chemistry and Computer Science, Dubrovnik, 20–25 June 1988. Studies in Physical and Theoretical Chemistry, vol 63. Elsevier/North-Holland, Amsterdam, pp 25–40Google Scholar
  7. 7.
    Batagelj V, Brandes U (2005) Efficient Generation of Large Random Networks. Phys Rev E 71:036113ADSGoogle Scholar
  8. 8.
    Batagelj V, Ferligoj A (2000) Clustering relational data. In: Gaul W, Opitz O, Schader M (eds) Data Analysis. Springer, Berlin, pp 3–15Google Scholar
  9. 9.
    Batagelj V, Mrvar A (2000) Some Analyses of Erdős Collaboration Graph. Soc Netw 22:173–186MathSciNetGoogle Scholar
  10. 10.
    Batagelj V, Mrvar A (2001) A Subquadratic Triad Census Algorithm for Large Sparse Networks with Small Maximum Degree. Soc Netw 23:237–43Google Scholar
  11. 11.
    Batagelj V, Mrvar A (2007) Hierarchical clustering with relational constraints of large data sets. 6th Slovenian International Conference on Graph Theory, Bled, 24–30 JuneGoogle Scholar
  12. 12.
    Batagelj V, Mrvar A (2008) Analysis of kinship relations with Pajek. Soc Sci Comput Rev 26(2):224–246Google Scholar
  13. 13.
    Batagelj V, Zaveršnik M (2002) Generalized Cores. arxiv cs.DS/0202039Google Scholar
  14. 14.
    Batagelj V, Zaveršnik M (2007) Short cycle connectivity. Discret Math 307(3–5):310–318Google Scholar
  15. 15.
    Bollobás B (2001) Random Graphs. Cambridge University Press, CambridgeGoogle Scholar
  16. 16.
    Brandes U (2001) A Faster Algorithm for Betweenness Centrality. J Math Soc 25(2):163–177Google Scholar
  17. 17.
    Breiger RL (2004) The analysis of social networks. In: Hardy M, Bryman A (eds) Handbook of data analysis. Sage, London, pp 505–526Google Scholar
  18. 18.
    Chakrabarti D, Zhan Y, Faloutsos C (2004) R-MAT: A Recursive Model for Graph Mining. In: SIAM Data Mining 2004, Orlando, Florida, SIAMGoogle Scholar
  19. 19.
    Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms. MIT Press, CambridgeGoogle Scholar
  20. 20.
    Doreian P, Batagelj V, Ferligoj A (2000) Symmetric-Acyclic Decompositions of Networks. J Classif 17(1):3–28MathSciNetGoogle Scholar
  21. 21.
    Doreian P, Batagelj V, Ferligoj A (2005) Generalized Blockmodeling. Cambridge University Press, CambridgeGoogle Scholar
  22. 22.
    Dorogovtsev SN, Mendes JFF (2003) Evolution of networks: from biological nets to the internet and www. Oxford University Press, OxfordGoogle Scholar
  23. 23.
    Ferligoj A, Batagelj V (1983) Some types of clustering with relational constraints. Psychometrika 48(4):541–552MathSciNetGoogle Scholar
  24. 24.
    Freeman LC (1979) Centrality in Social Networks: A Conceptual Clarification. Soc Netw 1:211–213Google Scholar
  25. 25.
    Garfield E, Sher IH, Torpie RJ (1964) The Use of Citation Data in Writing the History of Science. The Institute for Scientific Information, PhiladelphiaGoogle Scholar
  26. 26.
    Granovetter M (1973) The Strength of Weak Ties. Am J Sociol 78:1360–80Google Scholar
  27. 27.
    Harary F, Norman RZ, Cartwright D (1965) Structural Models: An Introduction to the Theory of Directed Graphs. Wiley, New YorkGoogle Scholar
  28. 28.
    Huisman M, van Duijn MAJ (2005) Software for social network analysis. In: Carrington PJ, Scott J, Wasserman S (eds) Models and methods in social network analysis. Cambridge University Press, Cambridge, pp 270–316Google Scholar
  29. 29.
    Hummon NP, Doreian P (1990) Computational Methods for Social Network Analysis. Soc Netw 12:273–288Google Scholar
  30. 30.
    Kleinberg J (1998) Authoritative sources in a hyperlinked environment. Proc 9th ACM-SIAM Symposium on Discrete AlgorithmsGoogle Scholar
  31. 31.
    Kleinberg J, Kumar R, Raghavan P, Rajagopalan S, Tomkins A (1999) The Web as a graph: measurements, models and methods. Proc of the 5th International Computing and combinatorics ConferenceGoogle Scholar
  32. 32.
    Leskovec J, Kleinberg J, Faloutsos C (2006) Laws of Graph Evolution: Densification and Shrinking Diameters. ACM Transactions on Knowledge Discovery from Data (TKDD) vol 1, issue 1, article 2Google Scholar
  33. 33.
    Li L, Alderson D, Tanaka R, Doyle JC, Willinger W (2007) Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications. cond-mat/0501169, Internet Math 2(4):431–523Google Scholar
  34. 34.
    Mane KK, Börner K (2004) Mapping topics and topic bursts in PNAS. Proc Natl Acad Sci USA 101:5287–5290Google Scholar
  35. 35.
    Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256MathSciNetADSGoogle Scholar
  36. 36.
    Newman MEJ, Barabási AL, Watts D (2006) The Structure and Dynamics of Networks. Princeton Studies in Complexity. Princeton University Press, PrincetonGoogle Scholar
  37. 37.
    Pennock DM, Flake GW, Lawrence S, Glover EJ, Giles CL (2002) Winners don't take all: Characterizing the competition for links on the web. Proc Natl Acad Sci USA 99(8):5207–5211ADSGoogle Scholar
  38. 38.
    Seidman SB (1983) Network Structure And Minimum Degree. Soc Netw 5:269–287MathSciNetGoogle Scholar
  39. 39.
    Schank T, Wagner D (2005) Finding, counting and listing all triangles in large graphs, an experimental study. In: Workshop on Experimental and Efficient Algorithms (WEA). Lecture Notes in Computer Science, vol 3503, Springer, pp 606–609Google Scholar
  40. 40.
    Snyder D, Kick E (1979) The World System and World Trade: An Empirical Exploration of Conceptual Conflicts. Sociol Q 20(1):23–36Google Scholar
  41. 41.
    Snijders TAB (2005) Models for Longitudinal Network Data. In: Carrington P, Scott J, Wasserman S (eds) Models and methods in social network analysis. Cambridge University Press, New YorkGoogle Scholar
  42. 42.
    Stuckenschmidt H, Klein M (2004) Structure-Based Partitioning of Large Concept Hierarchies. Proc of the 3rd International Semantic Web Conference ISWC 2004, Hiroshima, JapanGoogle Scholar
  43. 43.
    Wasserman S, Faust K (1994) Social Network Analysis: Methods and Applications. Cambridge University Press, CambridgeGoogle Scholar
  44. 44.
    White DR, Batagelj V, Mrvar A (1999) Analyzing Large Kinship and Marriage Networks with Pgraph and Pajek. Soc Sci Comput Rev 17:245–274Google Scholar
  45. 45.
    Zaveršnik M, Batagelj V (2004) Islands. Slides from Sunbelt XXIV, Portorož, Slovenia, 12–16 MayGoogle Scholar

Books and Reviews

  1. 46.
    Ahuja RK, Magnanti TL, Orlin JB (1993) Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood CliffsGoogle Scholar
  2. 47.
    Batagelj V, Mrvar A (2003) Pajek – Analysis and Visualization of Large Networks. In: Jünger M, Mutzel P (eds) Graph Drawing Software. Springer, Berlin, pp 77–103Google Scholar
  3. 48.
    Brandes U, Erlebach T (2005) Network Analysis: Methodological Foundations. Lecture Notes in Computer Science. Springer, BerlinGoogle Scholar
  4. 49.
    Carrington PJ, Scott J, Wasserman S (2005) Models and Methods in Social Network Analysis. Cambridge University Press, CambridgeGoogle Scholar
  5. 50.
    Degenne A, Forsé M (1999) Introducing Social Networks. SAGE Publications, LondonGoogle Scholar
  6. 51.
    de Nooy W, Mrvar A, Batagelj V (2005) Exploratory Social Network Analysis with Pajek. Cambridge University Press, CambridgeGoogle Scholar
  7. 52.
    Knuth DE (1993) The Stanford GraphBase: A Platform for Combinatorial Computing. Addison-Wesley, ReadingGoogle Scholar
  8. 53.
    Scott JP (2000) Social Network Analysis: A Handbook. SAGE Publications, LondonGoogle Scholar

Web Resources

  1. 54.
    Center for Complex Network Research, Notre Dame: http://www.nd.edu/ networks/
  2. 55.
    Center for Spatially Integrated Social Science: http://www.csiss.org/
  3. 56.
    Complex Networks Collaboratory: http://cxnets.googlepages.com/
  4. 57.
    Internet Movie Database http://www.imdb.com/
  5. 58.
    Matthieu Latapy. Triangle computation web page. http://www-rp.lip6.fr/ latapy/Triangles/
  6. 59.
  7. 60.
  8. 61.
  9. 62.
    The Edinburgh Associative Thesaurus: http://www.eat.rl.ac.uk/
  10. 63.
    The Kansas Event Data System: http://web.ku.edu/keds/
  11. 64.

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Vladimir Batagelj
    • 1
  1. 1.University of LjubljanaLjubljanaSlovenia