Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Cell Biology: Networks, Regulation and Pathways

  • Gašper Tkačik
  • William Bialek
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_48

Definition of the Subject

In cell biology, networks are systems of interacting molecules that implement cellular functions, such as the regulation of gene expression , metabolism or intracellular signaling. While on a molecular level a biological network is a mesh of chemical reactions between, for example, enzymes and their substrates, or DNA-binding proteins and the genes that they regulate, the collective effect of these reactions can often be thought of as the enabling and regulating the flow of matter and energy (in metabolic networks), or of information (in signaling and transcriptional regulatory networks). The field is concerned primarily with the description and properties of such flows and with their emergence from network constituent parts – the molecules and their physical interactions. An important focus is also the question of how network function and operating principles can be inferred despite the limited experimental access to network states and building blocks.


This is a preview of subscription content, log in to check access.



We thank our colleagues and collaborators who have helped us learn about these issues: MJ Berry, CG Callan, T Gregor, JB Kinney, P Mehta, SE Palmer, E Schneidman, JJ Hopfield, T Mora, S Setayeshgar, N Slonim, GJ Stephens, DW Tank, N Tishby, A Walczak, EF Wieschaus, CH Wiggins and NS Wingreen. Our work was supported in part by NIH grants P50 GM071508 and R01 GM077599, by NSF Grants IIS–0613435 and PHY–0650617, by the Swartz Foundation, and by the Burroughs Wellcome Fund.


  1. 1.
    Acar M, Becksei A, van Oudenaarden A (2005) Enhancement of cellular memory by reducing stochastic transitions. Nature 435:228–232ADSGoogle Scholar
  2. 2.
    Ackers GK, Johnson AD, Shea MA (1982) Quantitative model for gene regulation by lambda phage repressor. Proc Natl Acad Sci (USA) 79(4):1129–33ADSGoogle Scholar
  3. 3.
    Albert R, Jeong H, Barabasi AL (2000) Error and attack tolerance of complex networks. Nature 406(6794):378–82ADSGoogle Scholar
  4. 4.
    Aldana M, Cluzel P (2003) A natural class of robust networks. Proc Natl Acad Sci (USA) 100:8710–4ADSGoogle Scholar
  5. 5.
    Alm E, Arkin AP (2003) Biological networks. Curr Opin Struct Biol 13(2):193–202Google Scholar
  6. 6.
    Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial chemotaxis. Nature 397(6715):168–71ADSGoogle Scholar
  7. 7.
    Arkin A, Ross J, McAdams HH (1998) Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected escherichia coli cells. Genetics 149(4):1633–48Google Scholar
  8. 8.
    Arnosti DN, Kulkarni MM (2005) Transcriptional enhancers: Intelligent enhanceosomes or flexible billboards? J Cell Biochem 94(5):890–8Google Scholar
  9. 9.
    Bar-Even A, Paulsson J, Maheshri N, Carmi M, O’Shea E, Pilpel Y, Barkai N (2006) Noise in protein expression scales with natural protein abundance. Nat Genet 38(6):636–43Google Scholar
  10. 10.
    Barabási AL (2002) Linked: The New Science of Networks. Perseus Publishing, CambridgeGoogle Scholar
  11. 11.
    Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–12MathSciNetADSGoogle Scholar
  12. 12.
    Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–13Google Scholar
  13. 13.
    Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387(6636):913–7ADSGoogle Scholar
  14. 14.
    Baylor DA, Lamb TD, Yau KW (1979) Responses of retinal rods to single photons. J Physiol (Lond) 288:613–634Google Scholar
  15. 15.
    Becskei A, Serrano L (2000) Engineering stability in gene networks by autoregulation. Nature 405(6786):590–3ADSGoogle Scholar
  16. 16.
    Berg HC (1975) Chemotaxis in bacteria. Annu Rev Biophys Bioeng 4(00):119–36Google Scholar
  17. 17.
    Berg HC, Purcell EM (1977) Physics of chemoreception. Biophys J 20(2):193–219Google Scholar
  18. 18.
    Bergmann S, Sandler O, Sberro H, Shnider S, Schejter E, Shilo BZ, Barkai N (2007) Pre-steady-state decoding of the bicoid morphogen gradient. PLoS Biol 5(2):e46Google Scholar
  19. 19.
    Bethe HA (1935) Statistical theory of superlattices. Proc R Soc London Ser A 150:552–575ADSGoogle Scholar
  20. 20.
    Bialek W (1987) Physical limits to sensation and perception. Annu Rev Biophys Biophys Chem 16:455–78Google Scholar
  21. 21.
    Bialek W (2001) Stability and noise in biochemical switches. Adv Neur Info Proc Syst 13:103Google Scholar
  22. 22.
    Bialek W, Setayeshgar S (2005) Physical limits to biochemical signaling. Proc Natl Acad Sci (USA) 102(29):10040–5ADSGoogle Scholar
  23. 23.
    Bialek W, Setayeshgar S (2006) Cooperativity, sensitivity and noise in biochemical signaling. arXiv.org:q-bio.MN/0601001Google Scholar
  24. 24.
    Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, Kondev J, Kuhlman T, Phillips R (2005a) Transcriptional regulation by the numbers: applications. Curr Opin Genet Dev 15(2):125–35Google Scholar
  25. 25.
    Bintu L, Buchler NE, Garcia HG, Gerland U, Hwa T, Kondev J, Phillips R (2005b) Transcriptional regulation by the numbers: models. Curr Opin Genet Dev 15(2):116–24Google Scholar
  26. 26.
    Blake WJ, Kaern M, Cantor CR, Collins JJ (2003) Noise in eukaryotic gene expression. Nature 422(6932):633–7ADSGoogle Scholar
  27. 27.
    Block SM, Segall JE, Berg HC (1983) Adaptation kinetics in bacterial chemotaxis. J Bacteriol 154(1):312–23Google Scholar
  28. 28.
    Bray D (1995) Protein molecules as computational elements in living cells. Nature 376(6538):307–12ADSGoogle Scholar
  29. 29.
    Bray D, Bourret RB, Simon MI (1993) Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. Mol Biol Cell 4(5):469–82Google Scholar
  30. 30.
    Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21(1 Suppl):33–7Google Scholar
  31. 31.
    Buchler NE, Gerland U, Hwa T (2003) On schemes of combinatorial transcription logic. Proc Natl Acad Sci (USA) 100(9):5136–41ADSGoogle Scholar
  32. 32.
    Chang L, Karin M (2001) Mammalian map kinase signalling cascades. Nature 410(6824):37–40ADSGoogle Scholar
  33. 33.
    Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ (2000) Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol Biol Cell 11(1):369–91Google Scholar
  34. 34.
    von Dassow G, Meir E, Munro EM, Odell GM (2000) The segment polarity network is a robust developmental module. Nature 406(6792):188–92ADSGoogle Scholar
  35. 35.
    Dekel E, Alon U (2005) Optimality and evolutionary tuning of the expression level of a protein. Nature 436(7050):588–92ADSGoogle Scholar
  36. 36.
    Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci (USA) 95(25):14863–8ADSGoogle Scholar
  37. 37.
    Elemento O, Slonim N, Tavazoie S (2007) A universal framework for regulatory element discovery across all genomes and data types. Mol Cell 28(2):337–50Google Scholar
  38. 38.
    Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–8ADSGoogle Scholar
  39. 39.
    Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297(5584):1183–6ADSGoogle Scholar
  40. 40.
    Falke JJ, Bass RB, Butler SL, Chervitz SA, Danielson MA (1997) The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu Rev Cell Dev Biol 13:457–512Google Scholar
  41. 41.
    Francois P, Hakim V (2004) Design of genetic networks with specified functions by evolution in silico. Proc Natl Acad Sci (USA) 101(2):580–5ADSGoogle Scholar
  42. 42.
    Francois P, Hakim V, Siggia ED (2007) Deriving structure from evolution: metazoan segmentation. Mol Syst Bio 3: Article 154Google Scholar
  43. 43.
    Friedman N (2004) Inferring cellular networks using probabilistic graphical models. Science 303(5659):799–805ADSGoogle Scholar
  44. 44.
    Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767):339–42ADSGoogle Scholar
  45. 45.
    Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141–7ADSGoogle Scholar
  46. 46.
    Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425(6959):737–41Google Scholar
  47. 47.
    Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361Google Scholar
  48. 48.
    Gillespie DT (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58:35–55ADSGoogle Scholar
  49. 49.
    Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E, Vijayadamodar G, Pochart P, Machineni H, Welsh M, Kong Y, Zerhusen B, Malcolm R, Varrone Z, Collis A, Minto M, Burgess S, McDaniel L, Stimpson E, Spriggs F, Williams J, Neurath K, Ioime N, Agee M, Voss E, Furtak K, Renzulli R, Aanensen N, Carrolla S, Bickelhaupt E, Lazovatsky Y, DaSilva A, Zhong J, Stanyon CA, Finley J R L, White KP, Braverman M, Jarvie T, Gold S, Leach M, Knight J, Shimkets RA, McKenna MP, Chant J, Rothb erg JM (2003) A protein interaction map of Drosophila melanogaster. Science (5651):1727–36Google Scholar
  50. 50.
    Golding I, Paulsson J, Zawilski SM, Cox EC (2005) Real-time kinetics of gene activity in individual bacteria. Cell 123(6):1025–36Google Scholar
  51. 51.
    Goldman MS, Golowasch J, Marder E, Abbott LF (2001) Global structure robustness and modulation of neural models. J Neurosci 21:5229–5238Google Scholar
  52. 52.
    Gonze D, Halloy J, Goldbeter A (2002) Robustness of circadian rhythms with respect to molecular noise. Proc Natl Acad Sci (USA) 99(2):673–8ADSGoogle Scholar
  53. 53.
    Goulian M (2004) Robust control in bacterial regulatory circuits. Curr Opin Microbiol 7(2):198–202Google Scholar
  54. 54.
    Gregor T, Tank DW, Wieschaus EF, Bialek W (2007a) Probing the limits to positional information. Cell 130(1):153–64Google Scholar
  55. 55.
    Gregor T, Wieschaus EF, McGregor AP, Bialek W, Tank DW (2007b) Stability and nuclear dynamics of the bicoid morphogen gradient. Cell 130(1):141–52Google Scholar
  56. 56.
    Guet CC, Elowitz MB, Hsing W, Leibler S (2002) Combinatorial synthesis of genetic networks. Science 296(5572):1466–70ADSGoogle Scholar
  57. 57.
    Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP, Vidal M (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430(6995):88–93ADSGoogle Scholar
  58. 58.
    Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402(6761 Suppl):C47–52Google Scholar
  59. 59.
    Hasty J, McMillen D, Isaacs F, Collins JJ (2001) Computational studies of gene regulatory networks: in numero molecular biology. Nat Rev Genet 2(4):268–79Google Scholar
  60. 60.
    Heinrich R, Schuster S (1996) The Regulation of Cellular Systems. Chapman and Hall, New YorkGoogle Scholar
  61. 61.
    Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415(6868):180–3ADSGoogle Scholar
  62. 62.
    Hofman J, Wiggins C (2007) A bayesian approach to network modularity. arXiv.org:07093512 Google Scholar
  63. 63.
    Hooshangi S, Thiberge S, Weiss R (2005) Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc Natl Acad Sci (USA) 102(10):3581–6ADSGoogle Scholar
  64. 64.
    Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci (USA) 79(8):2554–8MathSciNetADSGoogle Scholar
  65. 65.
    Huang KC, Meir Y, Wingreen NS (2003) Dynamic structures in Escherichia coli: spontaneous formation of mine rings and mind polar zones. Proc Natl Acad Sci (USA) 100(22):12724–8ADSGoogle Scholar
  66. 66.
    Ibarra RU, Edwards JS, Palsson BO (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420(6912):186–9ADSGoogle Scholar
  67. 67.
    Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N (2002) Revealing modular organization in the yeast transcriptional network. Nat Genet 31(4):370–7Google Scholar
  68. 68.
    Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci (USA) 98(8):4569–74ADSGoogle Scholar
  69. 69.
    Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–56Google Scholar
  70. 70.
    Jansen R, Gerstein M (2004) Analyzing protein function on a genomic scale: the importance of gold-standard positives and negatives for network prediction. Curr Opin Microbiol 7(5):535–45Google Scholar
  71. 71.
    Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:62–79MathSciNetADSGoogle Scholar
  72. 72.
    Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL (2000) The large-scale organization of metabolic networks. Nature 407(6804):651–4ADSGoogle Scholar
  73. 73.
    Jeong H, Mason SP, Barabasi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411(6833):41–2ADSGoogle Scholar
  74. 74.
    Jordan JD, Landau EM, Iyengar R (2000) Signaling networks: the origins of cellular multitasking. Cell 103(2):193–200Google Scholar
  75. 75.
    Kadonaga JT (2004) Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell 116(2):247–57Google Scholar
  76. 76.
    van Kampen NG (2007) Stochastic Processes in Physics and Chemistry. Elsevier, AmsterdamGoogle Scholar
  77. 77.
    Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at genomenet. Nucleic Acids Res 30(1):42–6Google Scholar
  78. 78.
    Karp PD, Riley M, Saier M, Paulsen IT, Collado-Vides J, Paley SM, Pellegrini-Toole A, Bonavides C, Gama-Castro S (2002) The ecocyc database. Nucleic Acids Res 30(1):56–8Google Scholar
  79. 79.
    Kashtan N, Alon U (2005) Spontaneous evolution of modularity and network motifs. Proc Natl Acad Sci (USA) 102(39):13773–8ADSGoogle Scholar
  80. 80.
    Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22(3):437–67Google Scholar
  81. 81.
    Keller EF (2005) Revisiting "scale-free" networks. Bioessays 27(10):1060–8Google Scholar
  82. 82.
    Kirschner M, Gerhart J (1998) Evolvability. Proc Natl Acad Sci (USA) 95(15):8420–7ADSGoogle Scholar
  83. 83.
    Kolch W (2000) Meaningful relationships: the regulation of the ras/raf/mek/erk pathway by protein interactions. Biochem J 351 Pt 2:289–305Google Scholar
  84. 84.
    Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrin-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MH, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637–43Google Scholar
  85. 85.
    Kuhlman T, Zhang Z, Saier J M H, Hwa T (2007) Combinatorial transcriptional control of the lactose operon of Escherichia coli. Proc Natl Acad Sci (USA) 104(14):6043–8ADSGoogle Scholar
  86. 86.
    Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298(5594):799–804ADSGoogle Scholar
  87. 87.
    Leloup JC, Goldbeter A (2003) Toward a detailed computational model for the mammalian circadian clock. Proc Natl Acad Sci (USA) 100(12):7051–6ADSGoogle Scholar
  88. 88.
    LeMasson G, Marder E, Abbott LF (1993) Activity-dependent regulation of conductances in model neurons. Science 259:1915–1917ADSGoogle Scholar
  89. 89.
    Levine M, Davidson EH (2005) Gene regulatory networks for development. Proc Natl Acad Sci (USA) 102(14):4936–42ADSGoogle Scholar
  90. 90.
    Lezon TR, Banavar JR, Cieplak M, Maritan A, Federoff NV (2006) Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns. Proc Natl Acad Sci (USA) 103:19033–19038ADSGoogle Scholar
  91. 91.
    Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci (USA) 101(14):4781–6ADSGoogle Scholar
  92. 92.
    Libby E, Perkins TJ, Swain PS (2007) Noisy information processing through transcriptional regulation. Proc Natl Acad Sci (USA) 104(17):7151–6ADSGoogle Scholar
  93. 93.
    Marder E, Bucher D (2006) Variability, compensation and homeostasis in neuron and network function. Nature Rev Neurosci 7:563–574Google Scholar
  94. 94.
    Markowetz F, Spang R (2007) Inferring cellular networks – a review. BMC Bioinformatics 8: 6-S5Google Scholar
  95. 95.
    Martin DE, Hall MN (2005) The expanding tor signaling network. Curr Opin Cell Biol 17(2):158–66Google Scholar
  96. 96.
    Maslov S, Sneppen K (2002) Specificity and stability in topology of protein networks. Science 296(5569):910–3ADSGoogle Scholar
  97. 97.
    McAdams HH, Arkin A (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci (USA) 94(3):814–9ADSGoogle Scholar
  98. 98.
    McAdams HH, Arkin A (1999) It’s a noisy business! Genetic regulation at the nanomolar scale. Trends Genet 15(2):65–9Google Scholar
  99. 99.
    McAdams HH, Shapiro L (1995) Circuit simulation of genetic networks. Science 269(5224):650–6ADSGoogle Scholar
  100. 100.
    von Mering C, Krause R, Snel B, Cornell M, Oliver SG, Fields S, Bork P (2002) Comparative assessment of large‐scale data sets of protein-protein interactions. Nature 417(6887):399–403ADSGoogle Scholar
  101. 101.
    Milo R, Itzkovitz S, Kashtan N, Levitt R, Shen-Orr S, Ayzenshtat I, Sheffer M, Alon U (2004) Superfamilies of evolved and designed networks. Science 303(5663):1538–42ADSGoogle Scholar
  102. 102.
    Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H, Oyama T, Kondo T (2005) Reconstitution of circadian oscillation of cyanobacterial kaic phophorylation in vitro. Science 308:414–415ADSGoogle Scholar
  103. 103.
    Nasmyth K (1996) At the heart of the budding yeast cell cycle. Trends Genet 12(10):405–12Google Scholar
  104. 104.
    Newman M, Watts D, Barabási AL (2006) The Structure and Dynamics of Networks. Princeton University Press, PrincetonGoogle Scholar
  105. 105.
    Nielsen UB, Cardone MH, Sinskey AJ, MacBeath G, Sorger PK (2003) Profiling receptor tyrosine kinase activation by using ab microarrays. Proc Natl Acad Sci (USA) 100(16):9330–5ADSGoogle Scholar
  106. 106.
    Nochomovitz YD, Li H (2006) Highly designable phenotypes and mutational buffers emerge from a systematic mapping between network topology and dynamic output. Proc Natl Acad Sci (USA) 103(11):4180–5ADSGoogle Scholar
  107. 107.
    Novak B, Tyson JJ (1997) Modeling the control of DNA replication in fission yeast. Proc Natl Acad Sci (USA) 94(17):9147–52ADSGoogle Scholar
  108. 108.
    Nurse P (2001) Cyclin dependent kinases and cell cycle control. Les Prix NobelGoogle Scholar
  109. 109.
    Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A (2002) Regulation of noise in the expression of a single gene. Nat Genet 31(1):69–73Google Scholar
  110. 110.
    Papin JA, Hunter T, Palsson BO, Subramaniam S (2005) Reconstruction of cellular signalling networks and analysis of their properties. Nat Rev Mol Cell Biol 6(2):99–111Google Scholar
  111. 111.
    Paulsson J (2004) Summing up the noise in gene networks. Nature 427(6973):415–8ADSGoogle Scholar
  112. 112.
    Pedraza JM, van Oudenaarden A (2005) Noise propagation in gene networks. Science 307(5717):1965–9ADSGoogle Scholar
  113. 113.
    Perez OD, Nolan GP (2002) Simultaneous measurement of multiple active kinase states using polychromatic flow cytometry. Nat Biotechnol 20(2):155–62Google Scholar
  114. 114.
    Ptashne M (2001) Genes and Signals. CSHL Press, Cold Spring Harbor, USAGoogle Scholar
  115. 115.
    Ptashne M (2004) A Genetic Switch: Phage lambda Revisited. CSHL PressGoogle Scholar
  116. 116.
    Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S (2006) Stochastic mRNA synthesis in mammalian cells. PLoS Biol 4(10):e309Google Scholar
  117. 117.
    Ramanathan S, Detwiler PB, Sengupta AM, Shraiman BI (2005) G-protein-coupled enzyme cascades have intrinsic properties that improve signal localization and fidelity. Biophys J 88(5):3063–71Google Scholar
  118. 118.
    Rao CV, Kirby JR, Arkin AP (2004) Design and diversity in bacterial chemotaxis: a comparative study in Escherichia coli and Bacillus subtilis. PLoS Biol 2(2):E49Google Scholar
  119. 119.
    Raser JM, O’Shea EK (2005) Noise in gene expression: origins, consequences, and control. Science 309(5743):2010–3Google Scholar
  120. 120.
    Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL (2002) Hierarchical organization of modularity in metabolic networks. Science 297(5586):1551–5ADSGoogle Scholar
  121. 121.
    Rieke F, Baylor DA (1998) Single photon detection by rod cells of the retina. Rev Mod Phys 70:1027–1036ADSGoogle Scholar
  122. 122.
    Roma DM, O’Flanagan R, Ruckenstein AE, Sengupta AM (2005) Optimal path to epigenetic swithcing. Phys Rev E 71:011902Google Scholar
  123. 123.
    Rosenfeld N, Alon U (2003) Response delays and the structure of transcription networks. J Mol Biol 329(4):645–54Google Scholar
  124. 124.
    Rosenfeld N, Young JW, Alon U, Swain PS, Elowitz MB (2005) Gene regulation at the single-cell level. Science 307(5717):1962–5ADSGoogle Scholar
  125. 125.
    Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437(7062):1173–8ADSGoogle Scholar
  126. 126.
    Rust MJ, Markson JS, Lane WS, Fisher DS, O’Shea EK (2007) Ordered phosphorylation giverns oscillation of a three-protein circadian clock. Science 318:809–812Google Scholar
  127. 127.
    Sachs K, Perez O, Pe’er D, Lauffenburger DA, Nolan GP (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science 308(5721):523–9Google Scholar
  128. 128.
    Sanchez L, Thieffry D (2001) A logical analysis of the Drosophila gap-gene system. J Theor Biol 211(2):115–41Google Scholar
  129. 129.
    Sasai M, Wolynes PG (2003) Stochastic gene expression as a many-body problem. Proc Natl Acad Sci (USA) 100(5):2374–9ADSGoogle Scholar
  130. 130.
    Schneidman E, Still S, Berry II MJ, Bialek W (2003) Network information and connected correlations. Phys Rev Lett 91(23):238701ADSGoogle Scholar
  131. 131.
    Schneidman E, Berry II MJ, Segev R, Bialek W (2006) Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440(7087):1007–12ADSGoogle Scholar
  132. 132.
    Schroeder MD, Pearce M, Fak J, Fan H, Unnerstall U, Emberly E, Rajewsky N, Siggia ED, Gaul U (2004) Transcriptional control in the segmentation gene network of Drosophila. PLoS Biol 2(9):E271Google Scholar
  133. 133.
    Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller D, Friedman N (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34(2):166–76Google Scholar
  134. 134.
    Setty Y, Mayo AE, Surette MG, Alon U (2003) Detailed map of a cis-regulatory input function. Proc Natl Acad Sci (USA) 100(13):7702–7ADSGoogle Scholar
  135. 135.
    Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423 & 623–656Google Scholar
  136. 136.
    Shen-Orr SS, Milo R, Mangan S, Alon U (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31(1):64–8Google Scholar
  137. 137.
    Shlens J, Field GD, Gauthier JL, Grivich MI, Petrusca D, Sher A, Litke AM, Chichilnisky EJ (2006) The structure of multi-neuron firing patterns in primate retina. J Neurosci 26(32):8254–66Google Scholar
  138. 138.
    Sigal A, Milo R, Cohen A, Geva-Zatorsky N, Klein Y, Liron Y, Rosenfeld N, Danon T, Perzov N, Alon U (2006) Variability and memory of protein levels in human cells. Nature 444(7119):643–6ADSGoogle Scholar
  139. 139.
    Siggia ED (2005) Computational methods for transcriptional regulation. Curr Opin Genet Dev 15(2):214–21MathSciNetGoogle Scholar
  140. 140.
    Slonim N, Atwal GS, Tkačik G, Bialek W (2005) Information-based clustering. Proc Natl Acad Sci (USA) 102(51):18297–302Google Scholar
  141. 141.
    Slonim N, Elemento O, Tavazoie S (2006) Ab initio genotype-phenotype association reveals intrinsic modularity in genetic networks. Mol Syst Biol 2 (2006) 0005Google Scholar
  142. 142.
    Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci (USA) 100(21):12123–8ADSGoogle Scholar
  143. 143.
    Stelling J, Gilles ED, Doyle 3rd FJ (2004) Robustness properties of circadian clock architectures. Proc Natl Acad Sci (USA) 101(36):13210–5ADSGoogle Scholar
  144. 144.
    Strogatz SH (2001) Exploring complex networks. Nature 410(6825):268–76ADSGoogle Scholar
  145. 145.
    Süel GM, Garcia-Ojalvo J, Liberman L, Elowitz MB (2006) An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440:545–550Google Scholar
  146. 146.
    Swain PS (2004) Efficient attenuation of stochasticity in gene expression through post-transcriptional control. J Mol Biol 344(4):965–76MathSciNetGoogle Scholar
  147. 147.
    Swain PS, Elowitz MB, Siggia ED (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci (USA) 99(20):12795–800ADSGoogle Scholar
  148. 148.
    Tanay A, Regev A, Shamir R (2005) Conservation and evolvability in regulatory networks: the evolution of ribosomal regulation in yeast. Proc Natl Acad Sci (USA) 102(20):7203–8ADSGoogle Scholar
  149. 149.
    Thattai M, van Oudenaarden A (2001) Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci (USA) 98(15):8614–9ADSGoogle Scholar
  150. 150.
    Thomas R (1973) Boolean formalization of genetic control circuits. J Theor Biol 42(3):563–85Google Scholar
  151. 151.
    Tkačik G (2007) Information Flow in Biological Networks. Dissertation, Princeton University, PrincetonGoogle Scholar
  152. 152.
    Tkačik G, Bialek W (2007) Diffusion, dimensionality and noise in transcriptional regulation. arXiv.org:07121852 [q-bio.MN]Google Scholar
  153. 153.
    Tkačik G, Schneidman E, Berry II MJ, Bialek W (2006) Ising models for networks of real neurons. arXiv.org:q-bio.NC/0611072Google Scholar
  154. 154.
    Tkačik G, Callan Jr CG, Bialek W (2008) Information capacity of genetic regulatory elements. Phys Rev E 78:011910. arXiv.org:0709.4209. [q-bioMN]Google Scholar
  155. 155.
    Tkačik G, Callan Jr CG, Bialek W (2008) Information flow and optimization in transcriptional regulation. Proc Natl Acad Sci 105(34):12265–12270. arXiv.org:0705.0313. [q-bio.MN]Google Scholar
  156. 156.
    Tkačik G, Gregor T, Bialek W (2008) The role of input noise in transcriptional regulation. PLoS One 3, e2774 arXiv.org:q-bioMN/0701002Google Scholar
  157. 157.
    Tomita J, Nakajima M, Kondo T, Iwasaki H (2005) No transcription‐translation feedback in circadian rhythm of kaic phosphorylation. Science 307:251–254ADSGoogle Scholar
  158. 158.
    Tucker CL, Gera JF, Uetz P (2001) Towards an understanding of complex protein networks. Trends Cell Biol 11(3):102–6Google Scholar
  159. 159.
    Tyson JJ, Chen K, Novak B (2001) Network dynamics and cell physiology. Nat Rev Mol Cell Biol 2(12):908–16Google Scholar
  160. 160.
    Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15(2):221–31Google Scholar
  161. 161.
    Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403(6770):623–7ADSGoogle Scholar
  162. 162.
    de Visser JA, Hermisson J, Wagner GP, Ancel Meyers L, Bagheri-Chaichian H, Blanchard JL, Chao L, Cheverud JM, Elena SF, Fontana W, Gibson G, Hansen TF, Krakauer D, Lewontin RC, Ofria C, Rice SH, von Dassow G, Wagner A, Whitlock MC (2003) Perspective: Evolution and detection of genetic robustness. Evolution Int J Org Evolution 57(9):1959–72Google Scholar
  163. 163.
    Wagner A, Fell DA (2001) The small world inside large metabolic networks. Proc Biol Sci 268(1478):1803–10Google Scholar
  164. 164.
    Walczak AM, Sasai M, Wolynes PG (2005) Self-consistent proteomic field theory of stochastic gene switches. Biophys J 88(2):828–50Google Scholar
  165. 165.
    Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–46Google Scholar
  166. 166.
    Watson JD, Baker TA, Beli SP, Gann A, Levine M, Losick R (2003) Molecular Biology of the Gene: 5th edn. Benjamin Cummings, Menlo ParkGoogle Scholar
  167. 167.
    Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–2ADSGoogle Scholar
  168. 168.
    Weinberger LS, Shenk T (2007) An hiv feedback resistor: auto-regulatory circuit deactivator and noise buffer. PLoS Biol 5(1):e9Google Scholar
  169. 169.
    Yeger-Lotem E, Sattath S, Kashtan N, Itzkovitz S, Milo R, Pinter RY, Alon U, Margalit H (2004) Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc Natl Acad Sci (USA) 101(16):5934–5939ADSGoogle Scholar
  170. 170.
    Yokobayashi Y, Weiss R, Arnold FH (2002) Directed evolution of a genetic circuit. Proc Nat Acad Sci (USA) 99(26):16587–91ADSGoogle Scholar
  171. 171.
    Young MW, Kay SA (2001) Time zones: a comparative genetics of circadian clocks. Nat Rev Genet 2(9):702–15Google Scholar
  172. 172.
    Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H, Tsalyuk M, Surette MG, Alon U (2004) Just-in-time transcription program in metabolic pathways. Nat Genet 36(5):486–91Google Scholar
  173. 173.
    Ziv E, Koytcheff R, Middendorf M, Wiggins C (2005a) Systematic identification of statistically significant network measures. Phys Rev E 71:016110ADSGoogle Scholar
  174. 174.
    Ziv E, Middendorf M, Wiggins C (2005b) Information theoretic approach to network modularity. Phys Rev E 71:046117MathSciNetADSGoogle Scholar
  175. 175.
    Ziv E, Nemenman I, Wiggins CH (2006) Optimal signal processing in small stochastic biochemical networks. arXiv.org:q-bio/0612041Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Gašper Tkačik
    • 1
  • William Bialek
    • 1
    • 2
  1. 1.Joseph Henry Laboratories of Physics, Lewis–Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonUSA
  2. 2.Princeton Center for Theoretical PhysicsPrinceton UniversityPrincetonUSA