Encyclopedia of Complexity and Systems Science

Editors: Robert A. Meyers (Editor-in-Chief)

Brain Pacemaker

  • Peter A. Tass
  • Oleksandr V. Popovych
  • Christian Hauptmann
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_42

Definition of the Subject

A brain pacemaker is a medical device that is implanted into the brain with the purpose to stimulate nervous tissue with electrical signals. Brain pacemakers are used for the therapy of patients suffering for example from Parkinson's disease, epilepsy or mental disorders . Brain stimulation is either called deep brain stimulation (DBS) if structures deeply inside the brain are targeted or Stimulation , if the electrical contacts of the stimulator are positioned on the surface of the brain. Apart from direct brain stimulation, brain pacemakers may also be used to stimulate the spinal cord (e. g. for the treatment of pain) or the vagus nerve (for the treatment of epilepsy). The electrical stimulation of the nervous system has a long history which goes back to the 19th century where first tests with cortical stimulation were documented [23]. The first intraoperative deep brain stimulation was performed by Spiegel et al. in 1947 in a patient suffering from...

This is a preview of subscription content, log in to check access

Bibliography

  1. 1.
    Abbott L, Nelson S (2000) Synaptic plasticity: Taming the beast. Nat Neurosci 3:1178–1183Google Scholar
  2. 2.
    Alberts WW, Wright EJ, Feinstein B (1969) Cortical potentials and parkinsonian tremor. Nature 221:670–672ADSGoogle Scholar
  3. 3.
    Andres F, Gerloff C (1999) Coherence of sequential movements and motor learning. J Clin Neurophysiol 16(6):520–527Google Scholar
  4. 4.
    Benabid A, Pollak P, Louveau A, Henry S, de Rougemont JJ (1987) Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol 50(1-6):344–346Google Scholar
  5. 5.
    Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, Perret JE, de Rougemount J (1991) Longterm suppression of tremor by chronic stimulation of ventral intermediate thalamic nucleus. Lancet 337:403–406Google Scholar
  6. 6.
    Benabid AL, Benazzous A, Pollak P (2002) Mechanisms of deep brain stimulation. Mov Disord 17:73–74Google Scholar
  7. 7.
    Benabid A-L, Wallace B, Mitrofanis J, Xia R, Piallat B, Chabardes S, Berger F (2005) A putative gerneralized model of the effects and mechanism of action of high frequency electrical stimulation of the central nervous system. Acta neurol Belg 105:149–157Google Scholar
  8. 8.
    Beurrier C, Bioulac B, Audin J, Hammond C (2001) High‐frequency stimulation produces a transient blockade of voltage‐gated currents in subthalamic neurons. J Neurophysiol 85(4):1351–1356Google Scholar
  9. 9.
    Beurrier C, Garcia L, Bioulac B, Hammond C (2002) Subthalamic nucleus: A clock inside basal ganglia? Thalamus Relat Syst 2:1–8Google Scholar
  10. 10.
    Blond S, Caparros‐Lefebvre D, Parker F, Assaker R, Petit H, Guieu J-D, Christiaens J-L (1992) Control of tremor and involuntary movement disorders by chronic stereotactic stimulation of the ventral intermediate thalamic nucleus. J Neurosurg 77:62–68Google Scholar
  11. 11.
    Brice J, McLellan L (1980) Suppression of intention tremor by contingent deep-brain stimulation. Lancet 1(8180):1221–1222Google Scholar
  12. 12.
    Daido H (1992) Order function and macroscopic mutual entrainment in uniformly coupled limit-cycle oscillators. Prog Theor Phys 88:1213–1218ADSGoogle Scholar
  13. 13.
    Debanne D, Gahweiler B, Thompson S (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampus slice cultures. J Physiol 507:237–247Google Scholar
  14. 14.
    Deuschl G, Schade‐Brittinger C, Krack P, Volkmann J, Schäfer H, Bötzel K, Daniels C, Deutschländer A, Dillmann U, Eisner W, Gruber D, Hamel W, Herzog J, Hilker R, Klebe S, Kloß M, Koy J, Krause M, Kupsch A, Lorenz D, Lorenzl S, Mehdorn H, Moringlane J, Oertel W, Pinsker M, Reichmann H, Reuß A, Schneider G-H, Schnitzler A, Steude U, Sturm V, Timmermann L, Tronnier V, Trottenberg T, Wojtecki L, Wolf E, Poewe W, Voges J (2006) A randomized trial of deep-brain stimulation for parkinsons disease. N Engl J Med 355:896–908Google Scholar
  15. 15.
    Dolan K, Majtanik M, Tass P (2005) Phase resetting and transient desynchronization in networks of globally coupled phase oscillators with inertia. Physica D 211:128–138MathSciNetADSMATHGoogle Scholar
  16. 16.
    Elble RJ, Koller WC (1990) Tremor. John Hopkins University Press, BaltimoreGoogle Scholar
  17. 17.
    Ermentrout B, Kopell N (1991) Multiple pulse interactions and averaging in systems of coupled neural assemblies. J Math Biol 29:195–217MathSciNetMATHGoogle Scholar
  18. 18.
    Feldman D (2000) Timing‐based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27:45–56Google Scholar
  19. 19.
    Filali M, Hutchison W, Palter V, Lozano A, Dostrovsky JO (2004) Stimulation‐induced inhibition of neuronal firing in human subthalamic nucleus. Exp Brain Res 156:274–281Google Scholar
  20. 20.
    Freund H-J (2005) Long-term effects of deep brain stimulation in parkinsons disease. Brain 128:2222–2223Google Scholar
  21. 21.
    Garcia L, D'Alessandro G, Fernagut P-O, Bioulac B, Hammond C (2005) Impact of high‐frequency stimulation parameters on the pattern of discharge of subthalamic neurons. J Neurophysiol 94:3662–3669Google Scholar
  22. 22.
    Gerstner W, Kempter R, van Hemmen J, Wagner H (1996) A neuronal learning rule for sub‐millisecond temporal coding. Nature 383:76–78ADSGoogle Scholar
  23. 23.
    Gildenberg P (2005) Evolution of neuromodulation. Stereotactic Funct Neurosurg 83:71–79Google Scholar
  24. 24.
    Goddar G (1967) Development of epileptic seizures through brain stimulation at low intensity. Nature 214:1020–1021ADSGoogle Scholar
  25. 25.
    Grannan ER, Kleinfeld D, Sompolinsky H (1993) Stimulus‐dependent synchronization of neuronal assemblies. Neural Comp 5:550–569Google Scholar
  26. 26.
    Grill WM, McIntyre CC (2001) Extracellular excitation of central neurons: Implications for the mechanisms of deep brain stimulation. Thalamus Relat Syst 1:269–277Google Scholar
  27. 27.
    Haken H (1970) Laser theory vol XXV/2C. In: Flügge S (ed) Encyclopedia of physics. Springer, BerlinGoogle Scholar
  28. 28.
    Haken H (1977) Synergetics. An introduction. Springer, BerlinMATHGoogle Scholar
  29. 29.
    Haken H (1983) Advanced synergetics. Springer, BerlinMATHGoogle Scholar
  30. 30.
    Haken H (1996) Principles of brain functioning. A synergetic approach to brain activity, behavior, and cognition. Springer, BerlinMATHGoogle Scholar
  31. 31.
    Haken H (2002) Brain dynamics. Synchronization and activity patterns in pulse‐coupled neural nets with delays and noise. Springer, BerlinMATHGoogle Scholar
  32. 32.
    Haken H, Kelso J, Bunz H (1985) A theoretical model of phase transitions in human hand movements. Biol Cybern 51:347–356MathSciNetMATHGoogle Scholar
  33. 33.
    Hansel D, Mato G, Meunier C (1993) Phase dynamics of weakly coupled Hodgkin–Huxley neurons. Europhys Lett 23:367–372ADSGoogle Scholar
  34. 34.
    Hansel D, Mato G, Meunier C (1993) Phase reduction and neuronal modeling. Concepts Neurosci 4(2):193–210Google Scholar
  35. 35.
    Hashimoto T, Elder C, Okun M, Patrick S, Vitek J (2003) Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 23(5):1916–1923Google Scholar
  36. 36.
    Hauptmann C, Tass PA (2007) Therapeutic rewiring by means of desynchronizing brain stimulation. Biosystems 89:173–181Google Scholar
  37. 37.
    Hauptmann C, Popovych O, Tass PA (2005) Delayed feedback control of synchronization in locally coupled neuronal networks. Neurocomputing 65–66:759–767Google Scholar
  38. 38.
    Hauptmann C, Popovych O, Tass PA (2005) Effectively desynchronizing deep brain stimulation based on a coordinated delayed feedback stimulation via several sites: A computational study. Biol Cybern 93:463–470MathSciNetMATHGoogle Scholar
  39. 39.
    Hauptmann C, Popovych O, Tass PA (2005) Multisite coordinated delayed feedback for an effective desynchronization of neuronal networks. Stoch Dyn 5(2):307–319MathSciNetMATHGoogle Scholar
  40. 40.
    Hauptmann C, Omelchenko O, Popovych OV, Maistrenko Y, Tass PA (2007) Control of spatially patterned synchrony with multisite delayed feedback. Phys Rev E 76:066209MathSciNetADSGoogle Scholar
  41. 41.
    Hauptmann C, Popovych O, Tass P (2007) Desynchronizing the abnormally synchronized neural activity in the subthalamic nucleus: A modeling study. Expert Rev Med Devices 4(5):633–650Google Scholar
  42. 42.
    Hebb D (1949) The organization of behavior. Wiley, New YorkGoogle Scholar
  43. 43.
    Kelso J (1995) Dynamic patterns: The self‐organization of brain and behavior. MIT Press, CumberlandGoogle Scholar
  44. 44.
    Kilgard M, Merzenich M (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–1718ADSGoogle Scholar
  45. 45.
    Kumar R, Lozano A, Sime E, Lang A (2003) Long-term follow-up of thalamic deep brain stimulation for essential and parkinsonian tremor. Neurology 61:1601–1604Google Scholar
  46. 46.
    Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer, BerlinMATHGoogle Scholar
  47. 47.
    Lenz F, Kwan H, Martin R, Tasker R, Dostrovsky J, Lenz Y (1994) Single unit analysis of the human ventral thalamic nuclear group. Tremor‐related activity in functionally identified cells. Brain 117:531–543Google Scholar
  48. 48.
    Limousin P, Speelman J, Gielen F, Janssens M (1999) Multicentre European study of thalamic stimulation in parkinsonian and essential tremor. J Neurol Neurosurg Psychiatry 66(3):289–296Google Scholar
  49. 49.
    Maistrenko Y, Lysyansky B, Hauptmann C, Burylko O, Tass P (2007) Multistability in the Kuramoto model with synaptic plasticity. Phys Rev E 75:066207MathSciNetADSGoogle Scholar
  50. 50.
    Majtanik M, Dolan K, Tass P (2006) Desynchronization in networks of globally coupled neurons with dendritic dynamics. J Biol Phys 32:307–333Google Scholar
  51. 51.
    Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215Google Scholar
  52. 52.
    McIntyre C, Grill W, Sherman D, Thakor N (2004) Cellular effects of deep brain stimulation: Model-based analysis of activation and inhibition. J Neurophysiol 91:1457–1469Google Scholar
  53. 53.
    McIntyre CC, Savasta M, Goff KKL, Vitek J (2004) Uncovering the mechanism(s) of action of deep brain stimulation: Activation, inhibition, or both. Clin Neurophysiol 115:1239–1248Google Scholar
  54. 54.
    Milton J, Jung P (eds) (2003) Epilepsy as a dynamics disease. Springer, BerlinGoogle Scholar
  55. 55.
    Miocinovic S, Parent M, Butson C, Hahn P, Russo G, Vitek J, McIntyre C (2006) Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. J Neurophysiol 96:1569–1580Google Scholar
  56. 56.
    Morimoto K, Fahnestock M, Racine R (2004) Kindling and status epilepticus models of epilepsy: Rewiring the brain. Prog Neurobiol 73:1–60Google Scholar
  57. 57.
    Neiman A, Russell D, Yakusheva T, DiLullo A, Tass PA (2007) Response clustering in transient stochastic synchronization and desynchronization of coupled neuronal bursters. Phys Rev E 76:021908MathSciNetADSGoogle Scholar
  58. 58.
    Nini A, Feingold A, Slovin H, Bergmann H (1995) Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase‐locked oscillations appear in the MPTP model of parkinsonism. J Neurophysiol 74:1800–1805Google Scholar
  59. 59.
    Nowotny T, Zhigulin V, Selverston A, Abarbanel H, Rabinovich M (2003) Enhancement of synchronization in a hybrid neural circuit by spike‐timing dependent plasticity. J Neurosci 23:9776–9785Google Scholar
  60. 60.
    Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization, a universal concept in nonlinear sciences. Cambridge University Press, CambridgeMATHGoogle Scholar
  61. 61.
    Pliss V (1964) Principal reduction in the theory of stability of motion. Izv Akad Nauk SSSR Math Ser 28:1297–1324MathSciNetMATHGoogle Scholar
  62. 62.
    Popovych OV, Hauptmann C, Tass PA (2005) Effective desynchronization by nonlinear delayed feedback. Phys Rev Lett 94:164102ADSGoogle Scholar
  63. 63.
    Popovych OV, Hauptmann C, Tass PA (2006) Control of neuronal synchrony by nonlinear delayed feedback. Biol Cybern 95:69–85MathSciNetMATHGoogle Scholar
  64. 64.
    Popovych OV, Hauptmann C, Tass PA (2006) Desynchronization and decoupling of interacting oscillators by nonlinear delayed feedback. Int J Bif Chaos 16(7):1977–1987MathSciNetMATHGoogle Scholar
  65. 65.
    Pyragas K, Popovych OV, Tass PA (2007) Controlling synchrony in oscillatory networks with a separate stimulation‐registration setup. Europhys Lett 80:40002ADSGoogle Scholar
  66. 66.
    Rodriguez‐Oroz M, Obeso J, Lang A, Houeto J, Pollak P, Rehncrona S, Kulisevsky J, Albanese A, Volkmann J, Hariz M, Quinn N, Speelman J, Guridi J, Zamarbide I, Gironell A, Molet J, Pascual‐Sedano B, Pidoux B, Bonnet A, Agid Y, Xie J, Benabid A, Lozano A, Saint-Cyr J, Romito L, Contarino M, Scerrati M, Fraix V, Blercom NV (2005) Bilateral deep brain stimulation in Parkinsons disease: A multicentre study with 4 years follow-up. Brain 128:2240–2249Google Scholar
  67. 67.
    Rosenblum MG, Pikovsky AS (2004) Controlling synchronization in an ensemble of globally coupled oscillators. Phys Rev Lett 92:114102ADSGoogle Scholar
  68. 68.
    Rosenblum MG, Pikovsky AS (2004) Delayed feedback control of collective synchrony: An approach to suppression of pathological brain rhythms. Phys Rev E 70:041904MathSciNetADSGoogle Scholar
  69. 69.
    Rubin J, Terman D (2004) High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J Comput Neurosci 16:211–235Google Scholar
  70. 70.
    Schnitzler A, Timmermann L, Gross J (2006) Physiological and pathological oscillatory networks in the human motor system. J Physiol Paris 99(1):3–7Google Scholar
  71. 71.
    Schuurman PR, Bosch DA, Bossuyt PM, Bonsel GJ, van Someren EJ, de Bie RM, Merkus MP, Speelman JD (2000) A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N Engl J Med 342:461–468Google Scholar
  72. 72.
    Schöner G, Haken H, Kelso J (1986) A stochastic theory of phase transitions in human hand movement. Biol Cybern 53:247–257Google Scholar
  73. 73.
    Seliger P, Young S, Tsimring L (2002) Plasticity and learning in a network of coupled phase oscillators. Phys Rev E 65:041906MathSciNetADSGoogle Scholar
  74. 74.
    Shen K, Zhu Z, Munhall A, Johnson SW (2003) Synaptic plasticity in rat subthalamic nucleus induced by high‐frequency stimulation. Synapse 50:314–319Google Scholar
  75. 75.
    Silchenko A, Tass P (2008) Computational modeling of paroxysmal depolarization shifts in neurons induced by the glutamate release from astrocytes. Biol Cybern 98:61–74MATHGoogle Scholar
  76. 76.
    Singer W (1989) Search for coherence: A basic principle of cortical self‐organization. Concepts Neurosci 1:1–26Google Scholar
  77. 77.
    Smirnov D, Barnikol U, Barnikol T, Bezruchko B, Hauptmann C, Bührle C, Maarouf M, Sturm V, Freund H-J, Tass P (2008) The generation of parkinsonian tremor as revealed by directional coupling analysis. Europhys Lett 83:20003Google Scholar
  78. 78.
    Song S, Miller K, Abbott L (2000) Competitive Hebian learning through spike‐timing‐dependent synaptic plasticity. Nat Neurosci 3(9):919–926Google Scholar
  79. 79.
    Speckmann E, Elger C (1991) The neurophysiological basis of epileptic activity: A condensed overview. Epilepsy Res Suppl 2:1–7Google Scholar
  80. 80.
    Steriade M, Jones EG, Llinas RR (1990) Thalamic oscillations and signaling. Wiley, New YorkGoogle Scholar
  81. 81.
    Strogatz SH (2003) Sync: The emerging science of spontaneous order. Hyperion, New YorkGoogle Scholar
  82. 82.
    Tasker RR (1998) Deep brain stimulation is preferable to thalamotomy for tremor suppression. Surg Neurol 49:145–154Google Scholar
  83. 83.
    Tass P, Hauptmann C (2007) Therapeutic modulation of synaptic connectivity with desynchronizing brain stimulation. Int J Psychophysiol 64:53–61Google Scholar
  84. 84.
    Tass PA (1996) Phase resetting associated with changes of burst shape. J Biol Phys 22:125–155Google Scholar
  85. 85.
    Tass PA (1996) Resetting biological oscillators – a stochastic approach. J Biol Phys 22:27–64Google Scholar
  86. 86.
    Tass PA (1999) Phase resetting in medicine and biology: Stochastic modelling and data analysis. Springer, BerlinMATHGoogle Scholar
  87. 87.
    Tass PA (2000) Stochastic phase resetting: A theory for deep brain stimulation. Prog Theor Phys Suppl 139:301–313ADSGoogle Scholar
  88. 88.
    Tass PA (2001) Desynchronizing double‐pulse phase resetting and application to deep brain stimulation. Biol Cybern 85:343–354Google Scholar
  89. 89.
    Tass PA (2001) Effective desynchronization by means of double‐pulse phase resetting. Europhys Lett 53:15–21ADSGoogle Scholar
  90. 90.
    Tass PA (2001) Effective desynchronization with a resetting pulse train followed by a single-pulse. Europhys Lett 55:171–177ADSGoogle Scholar
  91. 91.
    Tass PA (2002) Desynchronization of brain rhythms with soft phase‐resetting techniques. Biol Cybern 87:102–115MATHGoogle Scholar
  92. 92.
    Tass PA (2002) Effective desynchronization with a stimulation technique based on soft phase resetting. Europhys Lett 57:164–170ADSGoogle Scholar
  93. 93.
    Tass PA (2002) Effective desynchronization with bipolar double‐pulse stimulation. Phys Rev E 66:036226ADSGoogle Scholar
  94. 94.
    Tass PA (2003) A model of desynchronizing deep brain stimulation with a demand‐controlled coordinated reset of neural subpopulations. Biol Cybern 89:81–88MATHGoogle Scholar
  95. 95.
    Tass PA (2003) Desynchronization by means of a coordinated reset of neural sub‐populations – a novel technique for demand‐controlled deep brain stimulation. Prog Theor Phys Suppl 150:281–296ADSGoogle Scholar
  96. 96.
    Tass PA, Hauptmann C (2006) Therapeutic rewiring by means of desynchronizing brain stimulation. Nonlinear Phenom Complex Syst 9(3):298–312MathSciNetGoogle Scholar
  97. 97.
    Tass PA, Majtanik M (2006) Long-term anti‐kindling effects of desynchronizing brain stimulation: A theoretical study. Biol Cybern 94:58–66MathSciNetMATHGoogle Scholar
  98. 98.
    Tass PA, Hauptmann C, Popovych OV (2006) Development of therapeutic brain stimulation techniques with methods from nonlinear dynamics and statistical physics. Int J Bif Chaos 16(7):1889–1911MathSciNetMATHGoogle Scholar
  99. 99.
    Timmermann L, Florin E, Reck C (2007) Pathological cerebral oscillatory activity in parkinson's disease: A critical review on methods, data and hypotheses. Expert Rev Med Devices 4(5):651–661Google Scholar
  100. 100.
    van Hemmen J (2001) Theory of synaptic plasticity. In: Moss F, Gielen S (eds) Handbook of biologicla physics, vol 4. Elsevier, Amsterdam, pp 771–823Google Scholar
  101. 101.
    Volkmann J (2004) Deep brain stimulation for the treatment of Parkinson's disease. J Clin Neurophysiol 21:6–17Google Scholar
  102. 102.
    Winfree A (1980) The geometry of biological time. Springer, BerlinMATHGoogle Scholar
  103. 103.
    Wunderlin A, Haken H (1975) Scaling theory for nonequilibrium systems. Z Phys B 21:393–401ADSGoogle Scholar
  104. 104.
    Zhai Y, Kiss IZ, Tass PA, Hudson JL (2005) Desynchronization of coupled electrochemical oscillators with pulse stimulations. Phys Rev E 71:065202RMathSciNetADSGoogle Scholar
  105. 105.
    Zhou Q, Tao H, Poo M (2003) Reversal and stabilization of synaptic modifications in a developing visual system. Science 300:1953–1957ADSGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Peter A. Tass
    • 1
    • 2
    • 3
  • Oleksandr V. Popovych
    • 1
  • Christian Hauptmann
    • 1
  1. 1.Institute of Neuroscience and Biophysics 3 – Medicine and Virtual Institute of NeuromodulationResearch Center JülichJülichGermany
  2. 2.Department of Stereotaxic and Functional NeurosurgeryUniversity of CologneCologneGermany
  3. 3.Brain Imaging Center WestResearch Center JülichJülichGermany