Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Possibility Theory

  • Didier Dubois
  • Henri Prade
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_413

Definition of the Subject

Possibility theory is the simplest uncertainty theory devoted to the modeling of incomplete information. It is characterized by the use of two basic dual set functions that respectively grade the possibility and the necessity of events. Possibility theory lies at the crossroads between fuzzy sets, probability and non-monotonic reasoning. Possibility theory is closely related to fuzzy sets if one considers that a possibility distribution is a particular fuzzy set (of mutually exclusive) possible values. However fuzzy sets and fuzzy logic are primarily motivated by the representation of gradual properties while possibility theory handles the uncertainty of classical (or fuzzy) propositions. Possibility theory can be cast either in an ordinal or in a numerical setting. Qualitative possibility theory is closely related to belief revision theory, and common-sense reasoning with exception-tainted knowledge in Artificial Intelligence. It has been axiomatically...

This is a preview of subscription content, log in to check access.


  1. 1.
    Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst 1:3–28MathSciNetzbMATHGoogle Scholar
  2. 2.
    Gaines BR, Kohout L (1975) Possible automata. In: Proc Int Symp Multiple-ValuedLogic, Bloomington May 13–16. IEEE Press, pp 183–196Google Scholar
  3. 3.
    Dubois D, Prade H (1998) Possibility theory: Qualitative and quantitative aspects. In: Gabbay DM, Smets PP (eds) Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol 1. Kluwer, Dordrecht, pp 169–226Google Scholar
  4. 4.
    Dubois D, Nguyen HT, Prade H (2000) Fuzzy sets and probability: Misunderstandings,bridges and gaps. In: Dubois D, Prade H (eds) Fundamentals of Fuzzy Sets. Kluwer, Boston, pp 343–438Google Scholar
  5. 5.
    Hughes GE, Cresswell MJ (1968) An introduction to modal logic. Methuen, LondonzbMATHGoogle Scholar
  6. 6.
    Shackle GLS (1961) Decision, order and time in human affairs, 2nd edn. CambridgeUniversity Press, CambridgeGoogle Scholar
  7. 7.
    Spohn W (1990) A general, nonprobabilistic theory of inductive reasoning. In:Shachter RD et al (eds) Uncertainty in Artificial Intelligence, vol 4. North Holland, Amsterdam, pp 149–158Google Scholar
  8. 8.
    Lewis DL (1973) Counterfactuals. Basil Blackwell, OxfordGoogle Scholar
  9. 9.
    Dubois D (1986) Belief structures, possibility theory and decomposable measures on finite sets. Comput AI 5:403–416zbMATHGoogle Scholar
  10. 10.
    Sudkamp T (2002) Similarity and the measurement of possibility. Actes RencontresFrancophones sur la Logique Floue et ses Applications (Montpellier, France). Cepadues Editions, Toulouse, pp 13–26Google Scholar
  11. 11.
    Cohen LJ (1977) The probable and the provable. Clarendon, OxfordGoogle Scholar
  12. 12.
    Zadeh LA (1979) Fuzzy sets and information granularity. In: Gupta MM, Ragade R, YagerRR (eds) Advances in fuzzy set theory and applications. North-Holland, Amsterdam, pp 3–18Google Scholar
  13. 13.
    Zadeh LA (1982) Possibility theory and soft data analysis. In: Cobb L, Thrall R (eds) Mathematical frontiers of social and policy sciences. Westview Press, Boulder, pp 69–129Google Scholar
  14. 14.
    Dubois D, Prade H (1980) Fuzzy sets and systems: Theory and applications. AcademicPress, New YorkzbMATHGoogle Scholar
  15. 15.
    Dubois D, Prade H (1988) Possibility theory. Plenum, New YorkzbMATHGoogle Scholar
  16. 16.
    Klir GJ, Folger T (1988) Fuzzy sets, uncertainty and information. Prentice Hall, Englewood CliffszbMATHGoogle Scholar
  17. 17.
    Yager RR (1983) An introduction to applications of possibility theory. Hum Syst Manag 3:246–269Google Scholar
  18. 18.
    Dubois D, Hajek P, Prade H (2000) Knowledge-driven versus data-driven logics. J Log Lang Inf 9:65–89MathSciNetzbMATHGoogle Scholar
  19. 19.
    Walley P (1996) Measures of uncertainty in expert systems. Artif Intell 83:1–58MathSciNetADSGoogle Scholar
  20. 20.
    De Cooman G (1997) Possibility theory. Part I: Measure- and integral-theoretic groundwork; Part II: Conditional possibility; Part III: Possibilistic independence. Int J Gen Syst 25:291–371zbMATHGoogle Scholar
  21. 21.
    De Campos LM, Huete JF (1999) Independence concepts in possibility theory. Fuzzy Sets Syst 103:127–152 \( { \& } \) 487–506Google Scholar
  22. 22.
    Dubois DD, Farinas del Cerro L, Herzig A, Prade H (1997) Qualitative relevance andindependence: A roadmap. In: Proc of the 15h Inter Joint Conf on Artif Intell, Nagoya, 23–29 August, 1997. Morgan Kaufmann, San Mateo,pp 62–67Google Scholar
  23. 23.
    Borgelt C, Gebhardt J, Kruse R (2000) Possibilistic graphical models. In: DellaRiccia G et al (eds) Computational intelligence in data mining. Springer, Wien, pp 51–68Google Scholar
  24. 24.
    Benferhat S, Dubois D, Garcia L, Prade H (2002) On the transformation between possibilistic logic bases and possibilistic causal networks. Int J Approx Reason 29(2):135–173MathSciNetzbMATHGoogle Scholar
  25. 25.
    Ben Amor N, Benferhat S, Mellouli K (2003) Anytime propagation algorithm for min-based possibilistic graphs. Soft Comput 8(2):150–161Google Scholar
  26. 26.
    Borgelt C, Kruse R (2003) Operations and evaluation measures for learning possibilistic graphical models. Artif Intell 148(1–2):385–418MathSciNetzbMATHGoogle Scholar
  27. 27.
    Gärdenfors P (1988) Knowledge in flux. MIT Press, CambridgeGoogle Scholar
  28. 28.
    Dubois D, Prade H (1991) Epistemic entrenchment and possibilistic logic. Artif Intell 50:223–239MathSciNetzbMATHGoogle Scholar
  29. 29.
    Ben Amor N et al (2002) A theoretical framework for possibilistic independence in a weakly ordered setting. Int J Uncert Fuzz \( { \& } \) Knowl-B Syst 10:117–155Google Scholar
  30. 30.
    Lehmann D, Magidor M (1992) What does a conditional knowledge base entail? Artif Intell 55:1–60MathSciNetzbMATHGoogle Scholar
  31. 31.
    Dubois D, Fargier H, Prade H (2004) Ordinal and probabilistic representations of acceptance. J Artif Intell Res 22:23–56MathSciNetzbMATHGoogle Scholar
  32. 32.
    Benferhat S, Dubois D, Prade H (1997) Nonmonotonic reasoning, conditional objects and possibility theory Artif Intell 92:259–276Google Scholar
  33. 33.
    Pearl J (1990) System Z: A natural ordering of defaults with tractable applications todefault reasoning. In: Proc 3rd Conf Theoretical Aspects of Reasoning About Knowledge. MorganKaufmann, San Francisco, pp 121–135Google Scholar
  34. 34.
    Dubois D, Lang J, Prade H (1994) Possibilistic logic. In: Gabbay DM et al (eds) Handbook of logic in AI and logic programming, vol 3. Oxford University Press, Oxford, pp 439–513Google Scholar
  35. 35.
    Benferhat S, Dubois D, Prade H (1998) Practical handling of exception-tainted rules and independence information in possibilistic logic. Appl Intell 9:101–127Google Scholar
  36. 36.
    Dubois D, Prade H (2004)Possibilistic logic: A retrospective and prospective view. Fuzzy Sets Syst 144:3–23MathSciNetzbMATHGoogle Scholar
  37. 37.
    Dubois D, Prade H (2007) Toward multiple-agent extensions of possibilisticlogic. In: Proc IEEE Inter Conf on Fuzzy Systems (FUZZ-IEEE (2007)), London 23–26 July, 2007. pp 187–192Google Scholar
  38. 38.
    Benferhat S, Dubois D, Garcia L, Prade H (2002) On the transformation between possibilistic logic bases and possibilistic causal networks. Int J Approx Reason 29:135–173MathSciNetzbMATHGoogle Scholar
  39. 39.
    Ben Amor N, Benferhat S (2005) Graphoid properties of qualitative possibilistic independence relations. Int J Uncert Fuzz \( { \& } \) Knowl-B Syst 13:59–97Google Scholar
  40. 40.
    Savage LJ (1972) The foundations of statistics. Dover, New YorkzbMATHGoogle Scholar
  41. 41.
    Yager RR (1979) Possibilistic decision making. IEEE Trans Syst Man Cybern 9:388–392MathSciNetGoogle Scholar
  42. 42.
    Whalen T (1984) Decision making under uncertainty with various assumptions about available information. IEEE Trans Syst Man Cybern 14:888–900MathSciNetGoogle Scholar
  43. 43.
    Grabisch M, Murofushi T, Sugeno M (eds) (2000) Fuzzy measures and integrals theory andapplications. Physica, HeidelbergzbMATHGoogle Scholar
  44. 44.
    Dubois D, Prade H, Sabbadin R (2000) Qualitative decision theory with Sugeno integrals. In:Grabisch M, Murofushi T, Sugeno M (eds) Fuzzy measures and integrals theory andapplications. Physica, Heidelberg, pp 314–322Google Scholar
  45. 45.
    Dubois D, Prade H, Sabbadin R (2001) Decision-theoretic foundations of possibility theory. Eur J Oper Res 128:459–478MathSciNetzbMATHGoogle Scholar
  46. 46.
    Dubois D, Fargier H, Perny P, Prade H (2003) Qualitative decision theory with preference relations and comparative uncertainty: An axiomatic approach. Artif Intell 148:219–260zbMATHGoogle Scholar
  47. 47.
    Dubois D, Fargier H (2003) Qualitative decision rules under uncertainty. In: DellaRiccia G et al (eds) Planning based on decision theory. CISM courses and Lectures, vol 472. Springer, Wien, pp 3–26Google Scholar
  48. 48.
    Fargier H, Sabbadin R (2005) Qualitative decision under uncertainty: Back toexpected utility. Artif Intell 164:245–280MathSciNetzbMATHGoogle Scholar
  49. 49.
    Dubois D (2006) Possibility theory and statistical reasoning. Comput Stat Data Anal 51(1):47–69zbMATHGoogle Scholar
  50. 50.
    Dubois D, Prade H (1992) When upper probabilities are possibility measures. Fuzzy Sets Syst 49:s 65–74MathSciNetGoogle Scholar
  51. 51.
    Dubois D, Moral S, Prade H (1997) A semantics for possibility theory based onlikelihoods. J Math Anal Appl 205:359–380MathSciNetzbMATHGoogle Scholar
  52. 52.
    Shafer G (1987) Belief functions and possibility measures. In: Bezdek JC (ed) Analysisof fuzzy information, vol I: Mathematics and Logic. CRC Press, Boca Raton, pp 51–84Google Scholar
  53. 53.
    Benferhat S, Dubois D, Prade H (1999) Possibilistic and standard probabilisticsemantics of conditional knowledge bases. J Log Comput 9:873–895MathSciNetzbMATHGoogle Scholar
  54. 54.
    Maslov V (1987) Méthodes Opératorielles. Mir Publications, MoscowzbMATHGoogle Scholar
  55. 55.
    Kolokoltsov VN, Maslov VP (1997) Idempotent analysis and applications. Kluwer, DordrechtzbMATHGoogle Scholar
  56. 56.
    Puhalskii A (2001) Large deviations and idempotent probability. Chapman and Hall,Boca RatonzbMATHGoogle Scholar
  57. 57.
    Nguyen HT, Bouchon-Meunier B (2003) Random sets and large deviations principle asa foundation for possibility measures. Soft Comput 8:61–70zbMATHGoogle Scholar
  58. 58.
    De Cooman G, Aeyels D (1999) Supremum-preserving upper probabilities. Inf Sci 118:173–212zbMATHGoogle Scholar
  59. 59.
    Walley P, De Cooman G (1999) A behavioural model for linguistic uncertainty. Inf Sci 134:1–37Google Scholar
  60. 60.
    Gebhardt J, Kruse R (1993) The context model. I Int J Approx Reason 9:283–314Google Scholar
  61. 61.
    Joslyn C (1997) Measurement of possibilistic histograms from interval data. Int J Gen Syst 26:9–33MathSciNetzbMATHGoogle Scholar
  62. 62.
    Neumaier A (2004) Clouds, fuzzy sets and probability intervals. Reliab Comput 10:249–272MathSciNetzbMATHGoogle Scholar
  63. 63.
    De Baets B, Tsiporkova E, Mesiar R (1999) Conditioning in possibility with strict order norms. Fuzzy Sets Syst 106:221–229zbMATHGoogle Scholar
  64. 64.
    Dubois D, Prade H (1997) Bayesian conditioning in possibility theory. Fuzzy Sets Syst 92:223–240MathSciNetzbMATHGoogle Scholar
  65. 65.
    De Cooman G (2001) Integration and conditioning in numerical possibility theory. Ann Math AI 32:87–123Google Scholar
  66. 66.
    Walley P (1991) Statistical reasoning with imprecise probabilities. Chapman andHall, Boca RatonzbMATHGoogle Scholar
  67. 67.
    Klir GJ (1990) A principle of uncertainty and information invariance. Int J Gen Syst 17:249–275zbMATHGoogle Scholar
  68. 68.
    Geer JF, Klir GJ (1992) A mathematical analysis of information-preserving transformations between probabilistic and possibilistic formulations of uncertainty. Int J Gen Syst 20:143–176zbMATHGoogle Scholar
  69. 69.
    Dubois D, Prade H, Sandri S (1993) On possibility/probability transformations. In:Lowen R, Roubens M (eds) Fuzzy logic: State of the art. Kluwer, Dordrecht, pp 103–112Google Scholar
  70. 70.
    Klir GJ, Parviz B (1992) Probability B-possibility transformations: A comparison. Int J Gen Syst 21:291–310zbMATHGoogle Scholar
  71. 71.
    Dubois D, Prade H (1982) On several representations of an uncertain body of evidence. In: Gupta M, Sanchez E (eds) Fuzzy information and decision processes. North-Holland, Amsterdam, pp 167–181Google Scholar
  72. 72.
    Smets P (1990) Constructing the pignistic probability function in a context ofuncertainty. In: Henrion M et al (eds) Uncertainty in artificial intelligence, vol 5. North-Holland,Amsterdam, pp 29–39Google Scholar
  73. 73.
    Dubois D, Prade H (2001) Smets new semantics for quantitative possibilitytheory. In: Proc ESQARU (2001), Toulouse, LNAI 2143. Springer, pp 410–421Google Scholar
  74. 74.
    Birnbaum ZW (1948) On random variables with comparable peakedness. Ann Math Stat 19:76–81MathSciNetzbMATHGoogle Scholar
  75. 75.
    Dubois D, Huellermeier E (2005) A Notion of comparative probabilistic entropybased on the possibilistic specificity ordering. In: Godo L (ed) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. Proc of 8th EuropeanConference, ECSQARU 2005, Barcelona, 6–8. Lecture Notes in Computer Science, vol 3571. Springer, BerlinGoogle Scholar
  76. 76.
    Dubois D, Foulloy L, Mauris G, Prade H (2004) Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities. Reliab Comput 10:273–297MathSciNetzbMATHGoogle Scholar
  77. 77.
    Mauris G, Lasserre V, Foulloy L (2000) Fuzzy modeling of measurement data acquired from physical sensors. IEEE Trans Meas Instrum 49:1201–1205Google Scholar
  78. 78.
    Baudrit C, Dubois D, Fargier H (2004) Practical representation of incompleteprobabilistic information. In: Lopz-Diaz M et al (eds) Soft methods in probability andstatistics. Proc 2nd Int Conf. Springer, Oviedo, pp 149–156Google Scholar
  79. 79.
    Dubois D, Prade H, Smets P (2003) A definition of subjective possibility. Badania Operacyjne i Decyzije (Wroclaw) 4:7–22MathSciNetGoogle Scholar
  80. 80.
    Dubois D, Prade H (1983) Unfair coins and necessity measures: A possibilistic interpretation of histograms. Fuzzy Sets Syst 10(1):15–20zbMATHGoogle Scholar
  81. 81.
    Dubois D, Prade H (1985) Evidence measures based on fuzzy information. Automatica 21:547–562MathSciNetzbMATHGoogle Scholar
  82. 82.
    Van Leekwijck W, Kerre EE (2001) Defuzzification: Criteria and classification. Fuzzy Sets Syst 108:303–314Google Scholar
  83. 83.
    Dubois D, Prade H (1987) The mean value of a fuzzy number. Fuzzy Sets Syst 24:279–300MathSciNetzbMATHGoogle Scholar
  84. 84.
    Yager RR (1981) A procedure for ordering fuzzy subsets of the unit interval. Inf Sci 24:143–161MathSciNetzbMATHGoogle Scholar
  85. 85.
    Chanas S, Nowakowski M (1988) Single value simulation of fuzzy variable. Fuzzy Sets Syst 25:43–57MathSciNetzbMATHGoogle Scholar
  86. 86.
    Dubois D, Prade H (1996) What are fuzzy rules and how to use them. Fuzzy Sets Syst 84:169–185MathSciNetzbMATHGoogle Scholar
  87. 87.
    Dubois D, Prade H, Ughetto L (2003) A new perspective on reasoning with fuzzy rules. Int J Intell Syst 18:541–567zbMATHGoogle Scholar
  88. 88.
    Galichet S, Dubois D, Prade H (2004) Imprecise specification of ill-known functions using gradual rules. Int J Approx Reason 35:205–222MathSciNetzbMATHGoogle Scholar
  89. 89.
    Dubois D, Huellermeier E, Prade H (2003) A note on quality measures for fuzzyassociation rules. In: De Baets B, Bilgic T (eds) Fuzzy sets and systems. Proc of the 10th Int FuzzySystems Assoc World Congress IFSA, Istanbul, 2003, LNAI 2715. Springer, pp 346–353Google Scholar
  90. 90.
    Dubois D, Fargier H, Prade H (1996) Possibility theory in constraint satisfaction problems: Handling priority, preference and uncertainty. Appl Intell 6:287–309Google Scholar
  91. 91.
    Dubois D, Fortemps P (1999) Computing improved optimal solutions to max-min flexible constraint satisfaction problems. Eur J Oper Res 118:95–126zbMATHGoogle Scholar
  92. 92.
    Dubois D, Fargier H, Prade H (1995) Fuzzy constraints in job-shop scheduling. J Intell Manuf 6:215–234Google Scholar
  93. 93.
    Slowinski R, Hapke M (eds) (2000) Scheduling under fuzziness. Physica, HeidelbergzbMATHGoogle Scholar
  94. 94.
    Chanas S, Zielinski P (2001) Critical path analysis in the network with fuzzy activity times. Fuzzy Sets Syst 122:195–204MathSciNetzbMATHGoogle Scholar
  95. 95.
    Chanas S, Dubois D, Zielinski P (2002) Necessary criticality in the network with imprecise activity times. IEEE Trans Man Mach Cybern 32:393–407Google Scholar
  96. 96.
    Dubois D, Kerre E, Mesiar R, Prade H (2000) Fuzzy interval analysis. In: Dubois D,Prade H (eds) Fundamentals of fuzzy sets. Kluwer, Boston, pp 483–581Google Scholar
  97. 97.
    Dubois D, Prade H (1991) Random sets and fuzzy interval analysis. Fuzzy Sets Syst 42:87–101MathSciNetzbMATHGoogle Scholar
  98. 98.
    Helton JC, Oberkampf WL (eds) (2004) Alternative Representations of EpistemicUncertainty. Reliability Engineering and Systems Safety, vol 85. Elsevier, Amsterdam, p 369Google Scholar
  99. 99.
    Guyonnet D et al (2003) Hybrid approach for addressing uncertainty in risk assessments. J Env Eng 129:68–78Google Scholar
  100. 100.
    Gil M (ed) (2001) Fuzzy random variables. Inf Sci 133Google Scholar
  101. 101.
    Krishnapuram R, Keller J (1993) A possibilistic approach to clustering. IEEE Trans Fuzzy Syst 1:98–110Google Scholar
  102. 102.
    Bezdek J, Keller J, Krishnapuram R, Pal N (1999) Fuzzy models and algorithms forpattern recognition and image processing. In: The Handbooks of Fuzzy Sets Series. Kluwer,BostonGoogle Scholar
  103. 103.
    Wolkenhauer O (1998) Possibility theory with applications to data analysis. ResearchStudies Press, ChichesterzbMATHGoogle Scholar
  104. 104.
    Tanaka H, Guo PJ (1999) Possibilistic data analysis for operations research. Physica,HeidelbergzbMATHGoogle Scholar
  105. 105.
    Borgelt C, Gebhardt J, Kruse R (2000) Possibilistic graphical models. In: DellaRiccia G et al (eds) Computational intelligence in data mining. CISM Series, vol N408. Springer, BerlinGoogle Scholar
  106. 106.
    Bosc P, Prade H (1997) An introduction to the fuzzy set and possibility theory-basedtreatment of soft queries and uncertain of imprecise databases. In: Smets P, Motro A (eds)Uncertainty management in information systems. Kluwer, Dordrecht, pp 285–324Google Scholar
  107. 107.
    Cayrac D, Dubois D, Prade H (1996) Handling uncertainty with possibility theory andfuzzy sets in a satellite fault diagnosis application. IEEE Trans Fuzzy Syst 4:251–269Google Scholar
  108. 108.
    Boverie S et al (2002) Online diagnosis of engine dyno test benches: A possibilisticapproach. Proc 15th Eur Conf on Artificial Intelligence, Lyon. IOS Press, Amsterdam,p 658–662Google Scholar
  109. 109.
    Benferhat S, Dubois D, Prade H, Williams M-A (2002) A practical approach to revising prioritized knowledge bases. Stud Log 70:105–130MathSciNetzbMATHGoogle Scholar
  110. 110.
    Amgoud L, Prade H (2004) Reaching agreement through argumentation:A possibilistic approach. In: Proc of the 9th Int Conf on Principles of Knowledge Representation and Reasoning (KR'04), Whistler. AAAI Press, Cambridge,pp 175–182Google Scholar
  111. 111.
    Dubois D, Huellermeier E, Prade H (2002) Fuzzy set-based methods in instance-based reasoning. IEEE Trans Fuzzy Syst 10:322–332Google Scholar
  112. 112.
    Huellermeier E, Dubois D, Prade H (2002) Model adaptation in possibilistic instance-based reasoning. IEEE Trans Fuzzy Syst 10:333–339Google Scholar
  113. 113.
    Raufaste E, Da Silva R, Neves C (2003) Mariné testing the descriptive validity of possibility theory in human judgements of uncertainty. Artif Intell 148:197–218zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Didier Dubois
    • 1
  • Henri Prade
    • 1
  1. 1.IRIT-CNRSUniversite Paul SabatierToulouse CedexFrance