Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Membrane Computing

  • Gheorghe PĂun
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_328

Definition of the Subject

Membrane computing is a branch of natural computing initiated in [9] which abstractscomputing models from the architecture and the functioning of living cells, as well as from the organization of cells in tissues, organs (brain included)or other higher order structures. The initial goal of membrane computing was to learn from the cell biology something possibly useful to computer science,and the area fast developed in this direction. Several classes of computing models (called P systems) were defined inthis context, inspired from biological facts or motivated from mathematical or computer science points of view. A series of applications werereported in the last years, in biology/medicine, linguistics, computer graphics, economics, approximate optimization, cryptography, etc.

The main ingredients of a P system are (i) the membrane structure, (ii) the multisets of objects placed in the compartments of themembrane structure, and (iii) the rules for processing the...

This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    Chen H, Ionescu M, Ishdorj TO (2006) On the efficiency of spiking neural P systems. In: Proceedings of 8th International Conference on Electronics, Information, and Communication. Ulanbator, Mongolia, June 2006, pp 49–52Google Scholar
  2. 2.
    Ciobanu G, Păun G, Pérez‐Jiménez MJ (eds) (2006) Applications of Membrane Computing. Springer, BerlinGoogle Scholar
  3. 3.
    Ibarra OH (2004) The number of membranes matters. In: Martín-Vide et al (eds) International Workshop, 1044 WMC2003, Tarragona,Reviced Papers LNCS, vol 2911. Springer, Berlin, pp 218–231Google Scholar
  4. 4.
    Ibarra OH, Yen HC (2006) Deterministic catalytic systems are not universal. Theor Comput Sci 363(2):149–161MathSciNetzbMATHGoogle Scholar
  5. 5.
    Ionescu M, Păun G, Yokomori T (2006) Spiking neural P systems. Fundam Inform 71(2–3):279–308Google Scholar
  6. 6.
    Korec I (1996) Small universal register machines. Theor Comput Sci 168(2):267–301MathSciNetzbMATHGoogle Scholar
  7. 7.
    Nishida TY (2004) An application of P systems: A new algorithm for NP‐complete optimization problems. In: Callaos N et al (eds) Proceedings of the 8th World Multi‐Conference on Systems, Cybernetics and Informatics, vol V. pp 109–112Google Scholar
  8. 8.
    Păun A, Păun G (2007) Small universal spiking neural P systems. BioSystems 90(1):48–60Google Scholar
  9. 9.
    Păun G (1998/2000) Computing with membranes. J Comput Syst Sci 61(1):108–143. (and Turku Center for Computer ScienceReport – TUCS 208, November (1998) http://www.tucs.fi)
  10. 10.
    Păun G (2002) Membrane Computing. An Introduction. Springer, BerlinGoogle Scholar

Books and Reviews

  1. 11.
    Alhazov A, Freund R, Rogozhin Y (2006) Computational power of symport/antiport: history, advances, and open problems. In:Freund R et al (eds) Springer, Berlin, pp 44–78Google Scholar
  2. 12.
    Bernardini F, Gheorghe M (2004) Population P systems. J Univers Comput Sci 10(5):509–539MathSciNetGoogle Scholar
  3. 13.
    Calude CS, Păun G, Rozenberg G, Salomaa A (eds) (2001) Multiset Processing. Mathematical, Computer Science, and Molecular Computing Points of View. LNCS, vol 2235. Springer, BerlinGoogle Scholar
  4. 14.
    Cardelli L, Păun G (2006) An universality result for a (mem)brane calculus based on mate/drip operations. Int J Found Comput Sci 17(1):49–68Google Scholar
  5. 15.
    Ciobanu G, Pan L, Păun G, Pérez‐Jiménez MJ (2007) P systems with minimal parallelism. Theor Comput Sci 378(1):117–130Google Scholar
  6. 16.
    Csuhaj‐Varjú E (2005) P automata. Models, results, and research topics. In: Mauri G et al (eds) Springer, Berlin, pp 1–11Google Scholar
  7. 17.
    Freund R, Kari L, Oswald M, Sosik P (2005) Computationally universal P systems without priorities: two catalysts are sufficient. Theor Comput Sci 330(2):251–266MathSciNetzbMATHGoogle Scholar
  8. 18.
    Freund R, Păun G, Rozenberg G, Salomaa A (eds) (2006) Membrane Computing. In: 6th International Workshop, WMC6, Vienna, Austria, July 2005, Revised, Selected, and Invited Papers. LNCS, vol 3859. Springer, BerlinGoogle Scholar
  9. 19.
    Gutiérrez‐Naranjo MA, Păun G, Pérez‐Jiménez MJ (eds) (2005) Cellular Computing. Complexity Aspects. Fenix Editora, SevillaGoogle Scholar
  10. 20.
    Hoogeboom HJ, Păun G, Rozenberg G, Salomaa A (eds) (2006) Membrane Computing. In: International Workshop, WMC7, Leiden, The Netherlands, 2006, Revised, Selected, and Invited Papers. LNCS, vol 4361. Springer, BerlinGoogle Scholar
  11. 21.
    Huang L, Wang N (2006) An optimization algorithms inspired by membrane computing. In: Jiao L et al (eds) Proc. ICNC (2006). LNCS, vol 4222. Springer, Berlin, pp 49–55Google Scholar
  12. 22.
    Jonoska N, Margenstern M (2004) Tree operations in P systems and λ‑calculus. Fundam Inform 59(1):67–90MathSciNetzbMATHGoogle Scholar
  13. 23.
    Kleijn J, Koutny M (2006) Synchrony and asynchrony in membrane systems. In: Hoogeboom HJ et al (eds) Springer, Berlin, pp 66–85Google Scholar
  14. 24.
    Leporati A, Mauri G, Zandron C (2006) Quantum sequential P systems with unit rules and energy assigned to membranes. In: Freund R et al (eds) Springer, Berlin, pp 310–325Google Scholar
  15. 25.
    Manca V (2006) MP systems approaches to biochemical dynamics: biological rhythms and oscillations. In: Hoogeboom HJ et al (eds) Springer, Berlin, pp 86–99Google Scholar
  16. 26.
    Martín-Vide C, Mauri G, Păun G, Rozenberg G, Salomaa A (eds) (2004) Membrane Computing. In: International Workshop, WMC2003, Tarragona, Spain, Revised Papers LNCS, vol 2933. Springer, BerlinGoogle Scholar
  17. 27.
    Mauri G, Păun G, Pérez‐Jiménez MJ, Rozenberg G, Salomaa A (eds) (2005) Membrane Computing. In: International Workshop, WMC5, Milano, Italy, 2004, Selected Papers. LNCS, vol 3365. Springer, BerlinGoogle Scholar
  18. 28.
    Păun A, Păun G (2002) The power of communication: P systems with symport/antiport. New Gener Comput 20(3):295–306Google Scholar
  19. 29.
    Păun A, Pérez‐Jiménez MJ, Romero‐Campero FJ (2006) Modeling signal transduction using P systems. In: Hoogeboom HJ et al (eds) Springer, Berlin, pp 100–122Google Scholar
  20. 30.
    Păun G (2001) P systems with active membranes: Attacking NP‐complete problems. J Autom, Lang Comb 6(1):75–90Google Scholar
  21. 31.
    Păun G, Păun R (2005) Membrane computing as a framework for modeling economic processes. In: Proceedings of Conference SYNASC, Timişoara. Press IEEE, pp 11–18Google Scholar
  22. 32.
    Păun G, Pazos J, Pérez‐Jiménez MJ, Rodriguez‐Patón A (2005) Symport/antiport P systems with three objects are universal. Fundam Inform 64(1–4):353–367Google Scholar
  23. 33.
    Păun G, Pérez‐Jiménez MJ, Salomaa A (2007) Spiking neural P systems. An early survey. Int J Found Comput Sci 18:435–456Google Scholar
  24. 34.
    Păun G, Rozenberg G (2002) A guide to membrane computing. Theor Comput Sci 287(1):73–100Google Scholar
  25. 35.
    Păun G, Rozenberg G, Salomaa A, Zandron C (eds) (2003) Membrane Computing. International Workshop, WMC 2002, Curtea de Argeş, Romania, August 2002. Revised Papers. LNCS, vol 2597. Springer, BerlinGoogle Scholar
  26. 36.
    Pérez‐Jiménez MJ (2005) An approach to computational complexity in membrane computing. In: Mauri G et al (eds) Springer, Berlin, pp 85–109Google Scholar
  27. 37.
    Pérez‐Jiménez MJ, Romero‐Jiménez A, Sancho‐Caparrini F (2002) Teoria de la complejidad en modelos de computacion celular con membranas. Kronos Editorial, SevillaGoogle Scholar
  28. 38.
    Sosik P, Rodriguez‐Patón A (2007) Membrane computing and complexity theory: A characterization of International PSPACE. J Found Comput Sci 73(1):137–152Google Scholar
  29. 39.
    Zaharie D, Ciobanu G (2006) Distributed evolutionary algorithms inspired by membranes in solving continuous optimization problems. In:Hoogeboom HJ et al (eds) Springer, Berlin, pp 536–554Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Gheorghe PĂun
    • 1
  1. 1.Institute of Mathematics of the Romanian AcademyBucureştiRomania