Encyclopedia of Complexity and Systems Science

2009 Edition
| Editors: Robert A. Meyers (Editor-in-Chief)

Intermittency and Localization

  • Gur Yaari
  • Dietrich Stauffer
  • Sorin Solomon
Reference work entry
DOI: https://doi.org/10.1007/978-0-387-30440-3_292

Definition of the Subject

In this paper, we show how simple logistic growth that was studied intensively during the last 200 years in many domains of science could be extended in a rather simple way. The resulting extended model has, among other features, two very important ones: Intermittency and Localization . These features were observed repeatedly along the history of science in an enormous number of real‐life systems in economics, sociology, biology, ecology and more. We suggest by this a unified theoretical umbrella that might serve in a surprising way many scientific disciplines who share similar observed patterns.

Introduction

A well known joke that many physicists like to tell during their talks in order to demonstrate the strength of simplifying the problem one has in hand is: “First, let us consider a spherical cow…”. Although, no one really believes in spherical cows – the power of simplification is well accepted and appreciated by the physics community, or as Albert...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

The present research was partially supported by the STREPs CO3 and DAPHNet of EC FP6, and by GIACS (General Integration of the Applications of Complexity in Science).

Bibliography

PrimaryLiterature

  1. 1.
    Ben-Avraham D, Havlin S (2000) Diffusion and reactions in fractals and disordered systems. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  2. 2.
    Biham O, Huang ZF, Malcai O, Solomon S (2001) Long-time fluctuations in a dynamical model of stock market indices. Phys Rev E 64(2):026101ADSCrossRefGoogle Scholar
  3. 3.
    Biham O, Malcai O, Levy M, Solomon S (1998) Generic emergence of power law distributions and lévy-stable intermittent fluctuations in discrete logistic systems. Phys Rev E 58:1352–1358ADSCrossRefGoogle Scholar
  4. 4.
    Billari F, Fent T, Prskawetz A, Scheffran J (2006) Agent-based computational modelling. Physica, HeidelbergCrossRefGoogle Scholar
  5. 5.
    Bońkowska K, Szymczak S, Cebrat S (2006) Microscopic modeling the demographic changes. Int J Mod Phys C 17:1477–1484Google Scholar
  6. 6.
    Cardy JL, Tauber U (1981) On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary state. Phys Rev Lett 77:4780ADSCrossRefGoogle Scholar
  7. 7.
    Challet D, Yaari G, Solomon S (2008) The therapy to shock-therapy: optimal dynamical policies for transition economies. Eur Phys J BGoogle Scholar
  8. 8.
    Ebeling W, Feistel R (1982) Physik der Selbstorganisation und Evolution. Akademie, BerlinGoogle Scholar
  9. 9.
    Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58:465–523ADSCrossRefGoogle Scholar
  10. 10.
    Eigen M, Schuster P (1979) The Hypercycle. Springer, BerlinCrossRefGoogle Scholar
  11. 11.
    Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugen 7:355–369CrossRefGoogle Scholar
  12. 12.
    Goldenberg J, Libai B, Solomon S, Jan N, Stauffer D (2000) Marketing percolation. Phys Stat Mech Appl 284:335–347CrossRefGoogle Scholar
  13. 13.
    Goldenberg J, Shavit Y, Shir E, Solomon S (2005) Distributive immunization of networks against viruses using the ‘honey-pot’ architecture. Nat Phys 1:184–188CrossRefGoogle Scholar
  14. 14.
    Grassberger P (1982) On phase transitions in schlogl's second model. Z Phys B Condens Matter 47:365–374MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Janssen HK (1981) On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary state. Z Phys B Condens Matter 42:151ADSCrossRefGoogle Scholar
  16. 16.
    Jiménez-Montano MA, Ebeling W (1980) A stochastic evolutionary model of technological change. Collect Phenom 3:107–114Google Scholar
  17. 17.
    Kesten H (1980) Random Processes in Random Environments. Springer, HeidelbergGoogle Scholar
  18. 18.
    Levy M, Levy H, Solomon S (2000) Microscopic simulation of financial markets: From investor behavior to market phenomena. Academic Press, New YorkGoogle Scholar
  19. 19.
    Lotka AJ (1923) Contribution to the analysis of malaria epidemiology. Am J Hyg 3:1–121Google Scholar
  20. 20.
    Louzoun Y, Shnerb NM, Solomon S (2007) Microscopic noise, adaptation and survival in hostile environments. Eur Phys J B 56:141–148ADSCrossRefGoogle Scholar
  21. 21.
    Louzoun Y, Solomon S, Atlan H, Cohen IR (2001) The emergence of spatial complexity in the immune system ELSEVIER. Physica A 297:242–252ADSzbMATHCrossRefGoogle Scholar
  22. 22.
    Louzoun Y, Solomon S, Atlan H, Cohen IR (2003) Proliferation and competition in decrete biological systems. Bull Math Biol 65(3):375–396CrossRefGoogle Scholar
  23. 23.
    Louzoun Y, Solomon S, Goldenberg J, Mazursky D (2003) World-size global markets lead to economic instability. Artif Life 9(4):357–370CrossRefGoogle Scholar
  24. 24.
    Malthus TR (1798) An Essay on the Principle of Population. Printed for Johnson J by Bensley T. Reprinted with an introduction by Antony Frew. Harmondsworth, Middx: Penguin BooksGoogle Scholar
  25. 25.
    Marsili M, Maslov S, Zhang YC (1998) Dynamical optimization theory of a diversified portfolio. Physica A 253:403–418CrossRefGoogle Scholar
  26. 26.
    May RM (1976) Simple mathematical models with very complicated dynamics. Nature 261:459–467ADSCrossRefGoogle Scholar
  27. 27.
    Montroll EW (1978) Social dynamics and the quantifying of social forces. Proc Natl Acad Sci USA 75(10):4633–4637MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 28.
    Nelson RR, Winter SG (1982) The theory of economic development. Harvard Univ Press, CambridgeGoogle Scholar
  29. 29.
    Richmond P, Solomon S (2001) Power laws are disguised Boltzmann Laws. Int J Mod Phys C 12(3):333–343ADSCrossRefGoogle Scholar
  30. 30.
    Ross R (1911) The prevention of malaria. John Murray, LondonGoogle Scholar
  31. 31.
    Schumpeter J (1934) The theory of economic development. Harvard Univ Press, CambridgeGoogle Scholar
  32. 32.
    Shnerb NM, Bettelheim E, Louzoun Y, Agam O, Solomon S (2001) Adaptatioin of autocatalytic fluctuations to diffusive noise. Phys Rev E 63:21103–21108ADSCrossRefGoogle Scholar
  33. 33.
    Shnerb NM, Louzoun Y, Bettelheim E, Solomon S (2000) The importance of being discrete: Life always wins on the surface. Proc Natl Acad Sci USA 97(19):10322–10324ADSzbMATHCrossRefGoogle Scholar
  34. 34.
    Solomon S (2000) Generalized Lotka Volterra (GLV) models of stock markets. In: Ballot G, Weisbuch G (eds) Applications of simulation to social sciences. Hermes Science Publications, Paris, pp 301–322Google Scholar
  35. 35.
    Solomon S, Richmond P (2001) Power laws of wealth, market order volumes and market returns. Physica A 299:(1)188–197ADSzbMATHCrossRefGoogle Scholar
  36. 36.
    Solomon S, Richmond P (2001) Stability of Pareto–Zipf law in non-stationary economies. Computing in Economics and Finance 2001 11, Society for Computational Economics, Apr available at http://ideas.repec.org/p/sce/scecf1/11.html
  37. 37.
    Solomon S, Weisbuch G, de Arcangelis L, Jan N, Stauffer D (2000) Social percolation models. Physica A 277(1–2):239–247ADSCrossRefGoogle Scholar
  38. 38.
    Stauffer D, de Oliveira SM, de Oliveira PMC (2006) Biology, Sociology, Geology by Computational Physicists. Elsevier, AmsterdamzbMATHGoogle Scholar
  39. 39.
    Verhulst PF (1838) Notice sur la loi que la population suit dans son accroissement. Corresp Math Phys 10:113–121Google Scholar
  40. 40.
    Volterra V (1931) Variations and Fluctuations of the Number of individuals in animal Species living together. Mc Graw Hill, NYGoogle Scholar
  41. 41.
    Weisbuch G, Solomon S, Stauffer D (2001) Economics with heterogeneous interacting agents. In: Lecture Notes in Economics and Mathematical Systems. Springer, Berlin, p 43Google Scholar
  42. 42.
    Yaari G, Deissenberg C, Solomon S (2006) Advertising, negative word-of-mouth and product acceptance. Eur J Econ Soc Syst 19(2):257–268Google Scholar
  43. 43.
    Yaari G, Nowak A, Rakocy K, Solomon S (2008) Microscopic study reveals the singular origins of growth. Eur Phys J B 62(4):505–513ADSCrossRefGoogle Scholar

Books and Reviews

  1. 44.
    For general books and reviews see [4,18], and [38].Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Gur Yaari
    • 1
    • 2
  • Dietrich Stauffer
    • 2
    • 3
  • Sorin Solomon
    • 1
    • 2
  1. 1.Institute for Scientific InterchangeTurinItaly
  2. 2.Racah Institute of PhysicsHebrew UniversityJerusalemIsrael
  3. 3.Institute for Theoretical PhysicsCologne UniversityKölnGermany